This commit is contained in:
sam 2025-09-30 18:07:47 +08:00
parent 30007cc056
commit 8f820e441e
3 changed files with 273 additions and 44 deletions

View File

@ -47,6 +47,7 @@ class PortfolioState:
class BacktestResult:
nav_series: List[Dict[str, float]] = field(default_factory=list)
trades: List[Dict[str, str]] = field(default_factory=list)
risk_events: List[Dict[str, object]] = field(default_factory=list)
class BacktestEngine:
@ -65,6 +66,22 @@ class BacktestEngine:
DepartmentManager(app_cfg) if app_cfg.departments else None
)
self.data_broker = DataBroker()
params = cfg.params or {}
self.risk_params = {
"max_position_weight": float(params.get("max_position_weight", 0.2)),
"max_daily_turnover_ratio": float(params.get("max_daily_turnover_ratio", 0.25)),
"fee_rate": float(params.get("fee_rate", 0.0005)),
"slippage_bps": float(params.get("slippage_bps", 10.0)),
}
self._fee_rate = max(self.risk_params["fee_rate"], 0.0)
self._slippage_rate = max(self.risk_params["slippage_bps"], 0.0) / 10_000.0
self._turnover_cap = max(self.risk_params["max_daily_turnover_ratio"], 0.0)
self._buy_actions = {
AgentAction.BUY_S,
AgentAction.BUY_M,
AgentAction.BUY_L,
}
self._sell_actions = {AgentAction.SELL}
department_scope: set[str] = set()
for settings in app_cfg.departments.values():
department_scope.update(settings.data_scope)
@ -389,7 +406,12 @@ class BacktestEngine:
trade_date_str = trade_date.isoformat()
price_map: Dict[str, float] = {}
decisions_map: Dict[str, Decision] = {}
feature_cache: Dict[str, Mapping[str, Any]] = {}
for ts_code, context, decision in records:
features = context.features or {}
if not isinstance(features, Mapping):
features = {}
feature_cache[ts_code] = features
scope_values = context.raw.get("scope_values") if context.raw else {}
if not isinstance(scope_values, Mapping):
scope_values = {}
@ -405,7 +427,7 @@ class BacktestEngine:
if not price_map and state.holdings:
trade_date_compact = trade_date.strftime("%Y%m%d")
for ts_code in state.holdings.keys():
for ts_code in list(state.holdings.keys()):
fetched = self.data_broker.fetch_latest(ts_code, trade_date_compact, ["daily.close"])
price = fetched.get("daily.close")
if price:
@ -421,84 +443,166 @@ class BacktestEngine:
if portfolio_value_before <= 0:
portfolio_value_before = state.cash or 1.0
trades_records: List[Dict[str, Any]] = []
daily_turnover = 0.0
executed_trades: List[Dict[str, Any]] = []
risk_events: List[Dict[str, Any]] = []
def _record_risk(ts_code: str, reason: str, decision: Decision, extra: Optional[Dict[str, Any]] = None) -> None:
payload = {
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": decision.action.value,
"target_weight": decision.target_weight,
"confidence": decision.confidence,
"reason": reason,
}
if extra:
payload.update(extra)
risk_events.append(payload)
for ts_code, decision in decisions_map.items():
price = price_map.get(ts_code)
if price is None or price <= 0:
continue
features = feature_cache.get(ts_code, {})
current_qty = state.holdings.get(ts_code, 0.0)
liquidity_score = float(features.get("liquidity_score") or 0.0)
risk_penalty = float(features.get("risk_penalty") or 0.0)
is_suspended = bool(features.get("is_suspended"))
limit_up = bool(features.get("limit_up"))
limit_down = bool(features.get("limit_down"))
position_limit = bool(features.get("position_limit"))
if is_suspended:
_record_risk(ts_code, "suspended", decision)
continue
if decision.action in self._buy_actions:
if limit_up:
_record_risk(ts_code, "limit_up", decision)
continue
if position_limit:
_record_risk(ts_code, "position_limit", decision)
continue
if risk_penalty >= 0.95:
_record_risk(ts_code, "risk_penalty", decision, {"risk_penalty": risk_penalty})
continue
if decision.action in self._sell_actions and limit_down:
_record_risk(ts_code, "limit_down", decision)
continue
effective_weight = max(decision.target_weight, 0.0)
if decision.action in self._buy_actions:
capped_weight = min(effective_weight, self.risk_params["max_position_weight"])
effective_weight = capped_weight * max(0.0, 1.0 - risk_penalty)
elif decision.action in self._sell_actions:
effective_weight = 0.0
desired_qty = current_qty
if decision.action is AgentAction.SELL:
if decision.action in self._sell_actions:
desired_qty = 0.0
elif decision.action is AgentAction.HOLD:
desired_qty = current_qty
else:
target_weight = max(decision.target_weight, 0.0)
desired_value = target_weight * portfolio_value_before
if desired_value > 0:
desired_qty = desired_value / price
else:
desired_qty = current_qty
elif decision.action in self._buy_actions or effective_weight >= 0.0:
desired_value = max(effective_weight, 0.0) * portfolio_value_before
desired_qty = desired_value / price if price > 0 else current_qty
delta = desired_qty - current_qty
if abs(delta) < 1e-6:
continue
if delta > 0:
cost = delta * price
if cost > state.cash:
affordable_qty = state.cash / price if price > 0 else 0.0
delta = max(0.0, affordable_qty)
cost = delta * price
if delta > 0 and self._turnover_cap > 0:
liquidity_scalar = max(liquidity_score, 0.1)
max_trade_value = self._turnover_cap * portfolio_value_before * liquidity_scalar
if max_trade_value > 0 and delta * price > max_trade_value:
delta = max_trade_value / price
desired_qty = current_qty + delta
if delta <= 0:
if delta > 0:
trade_price = price * (1.0 + self._slippage_rate)
per_share_cost = trade_price * (1.0 + self._fee_rate)
if per_share_cost <= 0:
_record_risk(ts_code, "invalid_price", decision)
continue
total_cost = state.cost_basis.get(ts_code, 0.0) * current_qty + cost
max_affordable = state.cash / per_share_cost if per_share_cost > 0 else 0.0
if delta > max_affordable:
if max_affordable <= 1e-6:
_record_risk(ts_code, "insufficient_cash", decision)
continue
delta = max_affordable
desired_qty = current_qty + delta
trade_value = delta * trade_price
fee = trade_value * self._fee_rate
total_cash_needed = trade_value + fee
if total_cash_needed <= 0:
_record_risk(ts_code, "invalid_trade", decision)
continue
previous_cost = state.cost_basis.get(ts_code, 0.0) * current_qty
new_qty = current_qty + delta
state.cost_basis[ts_code] = total_cost / new_qty if new_qty > 0 else 0.0
state.cash -= cost
state.cost_basis[ts_code] = (
(previous_cost + trade_value + fee) / new_qty if new_qty > 0 else 0.0
)
state.cash -= total_cash_needed
state.holdings[ts_code] = new_qty
state.opened_dates.setdefault(ts_code, trade_date_str)
trades_records.append(
daily_turnover += trade_value
executed_trades.append(
{
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": "buy",
"quantity": float(delta),
"price": price,
"value": cost,
"price": trade_price,
"base_price": price,
"value": trade_value,
"fee": fee,
"slippage": trade_price - price,
"confidence": decision.confidence,
"target_weight": decision.target_weight,
"effective_weight": effective_weight,
"risk_penalty": risk_penalty,
"liquidity_score": liquidity_score,
"status": "executed",
}
)
else:
sell_qty = abs(delta)
if sell_qty > current_qty:
sell_qty = current_qty
delta = -sell_qty
proceeds = sell_qty * price
sell_qty = min(abs(delta), current_qty)
if sell_qty <= 1e-6:
continue
trade_price = price * (1.0 - self._slippage_rate)
trade_price = max(trade_price, 0.0)
gross_value = sell_qty * trade_price
fee = gross_value * self._fee_rate
proceeds = gross_value - fee
cost_basis = state.cost_basis.get(ts_code, 0.0)
realized = (price - cost_basis) * sell_qty
realized = (trade_price - cost_basis) * sell_qty - fee
state.cash += proceeds
state.realized_pnl += realized
new_qty = current_qty + delta
new_qty = current_qty - sell_qty
if new_qty <= 1e-6:
state.holdings.pop(ts_code, None)
state.cost_basis.pop(ts_code, None)
state.opened_dates.pop(ts_code, None)
else:
state.holdings[ts_code] = new_qty
trades_records.append(
daily_turnover += gross_value
executed_trades.append(
{
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": "sell",
"quantity": float(sell_qty),
"price": price,
"value": proceeds,
"price": trade_price,
"base_price": price,
"value": gross_value,
"fee": fee,
"slippage": price - trade_price,
"confidence": decision.confidence,
"target_weight": decision.target_weight,
"effective_weight": effective_weight,
"risk_penalty": risk_penalty,
"liquidity_score": liquidity_score,
"realized_pnl": realized,
"status": "executed",
}
)
@ -521,10 +625,13 @@ class BacktestEngine:
"market_value": market_value,
"realized_pnl": state.realized_pnl,
"unrealized_pnl": unrealized_pnl,
"turnover": daily_turnover,
}
)
if trades_records:
result.trades.extend(trades_records)
if executed_trades:
result.trades.extend(executed_trades)
if risk_events:
result.risk_events.extend(risk_events)
try:
self._persist_portfolio(
@ -532,9 +639,10 @@ class BacktestEngine:
state,
market_value,
unrealized_pnl,
trades_records,
executed_trades,
price_map,
decisions_map,
daily_turnover,
)
except Exception: # noqa: BLE001
LOGGER.exception("持仓数据写入失败", extra=LOG_EXTRA)
@ -590,6 +698,7 @@ class BacktestEngine:
trades: List[Dict[str, Any]],
price_map: Dict[str, float],
decisions_map: Dict[str, Decision],
daily_turnover: float,
) -> None:
holdings_rows: List[tuple] = []
for ts_code, qty in state.holdings.items():
@ -623,6 +732,7 @@ class BacktestEngine:
snapshot_metadata = {
"holdings": len(state.holdings),
"turnover_value": daily_turnover,
}
with db_session() as conn:
@ -662,7 +772,7 @@ class BacktestEngine:
"""
INSERT INTO portfolio_trades
(trade_date, ts_code, action, quantity, price, fee, order_id, source, notes, metadata)
VALUES (?, ?, ?, ?, ?, 0, NULL, 'backtest', NULL, ?)
VALUES (?, ?, ?, ?, ?, ?, NULL, 'backtest', NULL, ?)
""",
[
(
@ -671,6 +781,7 @@ class BacktestEngine:
trade["action"],
trade["quantity"],
trade["price"],
trade.get("fee", 0.0),
json.dumps(trade, ensure_ascii=False),
)
for trade in trades
@ -708,6 +819,7 @@ def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
nav_rows: List[tuple] = []
trade_rows: List[tuple] = []
summary_payload: Dict[str, object] = {}
turnover_sum = 0.0
if result.nav_series:
first_nav = float(result.nav_series[0].get("nav", 0.0) or 0.0)
@ -721,6 +833,7 @@ def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
market_value = float(entry.get("market_value", 0.0) or 0.0)
realized = float(entry.get("realized_pnl", 0.0) or 0.0)
unrealized = float(entry.get("unrealized_pnl", 0.0) or 0.0)
turnover = float(entry.get("turnover", 0.0) or 0.0)
if nav_val > peak_nav:
peak_nav = nav_val
@ -738,7 +851,9 @@ def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
"market_value": market_value,
"realized_pnl": realized,
"unrealized_pnl": unrealized,
"turnover": turnover,
}
turnover_sum += turnover
nav_rows.append(
(
cfg.id,
@ -763,6 +878,9 @@ def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
"days": len(result.nav_series),
}
)
if turnover_sum:
summary_payload["total_turnover"] = turnover_sum
summary_payload["avg_turnover"] = turnover_sum / max(len(result.nav_series), 1)
if result.trades:
for trade in result.trades:
@ -789,6 +907,14 @@ def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
)
summary_payload["trade_count"] = len(trade_rows)
if result.risk_events:
summary_payload["risk_events"] = len(result.risk_events)
breakdown: Dict[str, int] = {}
for event in result.risk_events:
reason = str(event.get("reason") or "unknown")
breakdown[reason] = breakdown.get(reason, 0) + 1
summary_payload["risk_breakdown"] = breakdown
cfg_payload = {
"id": cfg.id,
"name": cfg.name,

View File

@ -21,6 +21,7 @@ from app.utils.config import get_config
from app.utils.db import db_session
from app.data.schema import initialize_database
from app.utils.logging import get_logger
from app.features.factors import compute_factor_range
LOGGER = get_logger(__name__)
@ -1616,4 +1617,20 @@ def run_ingestion(job: FetchJob, include_limits: bool = True) -> None:
raise
else:
alerts.clear_warnings("TuShare")
if job.granularity == "daily":
try:
LOGGER.info("开始计算因子:%s", job.name, extra=LOG_EXTRA)
compute_factor_range(
job.start,
job.end,
ts_codes=job.ts_codes,
skip_existing=False,
)
except Exception as exc:
alerts.add_warning("Factors", f"因子计算失败:{job.name}", str(exc))
LOGGER.exception("因子计算失败 job=%s", job.name, extra=LOG_EXTRA)
raise
else:
alerts.clear_warnings("Factors")
LOGGER.info("因子计算完成:%s", job.name, extra=LOG_EXTRA)
LOGGER.info("任务 %s 完成", job.name, extra=LOG_EXTRA)

View File

@ -3,7 +3,9 @@ from __future__ import annotations
import re
import sqlite3
from dataclasses import dataclass
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass, field
from datetime import datetime, timedelta
from typing import Any, ClassVar, Dict, Iterable, List, Optional, Sequence, Tuple
@ -91,6 +93,16 @@ class DataBroker:
MAX_WINDOW: ClassVar[int] = 120
BENCHMARK_INDEX: ClassVar[str] = "000300.SH"
enable_cache: bool = True
latest_cache_size: int = 256
series_cache_size: int = 512
_latest_cache: OrderedDict = field(init=False, repr=False)
_series_cache: OrderedDict = field(init=False, repr=False)
def __post_init__(self) -> None:
self._latest_cache = OrderedDict()
self._series_cache = OrderedDict()
def fetch_latest(
self,
ts_code: str,
@ -98,15 +110,19 @@ class DataBroker:
fields: Iterable[str],
) -> Dict[str, Any]:
"""Fetch the latest value (<= trade_date) for each requested field."""
field_list = [str(item) for item in fields if item]
cache_key: Optional[Tuple[Any, ...]] = None
if self.enable_cache and field_list:
cache_key = (ts_code, trade_date, tuple(sorted(field_list)))
cached = self._cache_lookup(self._latest_cache, cache_key)
if cached is not None:
return deepcopy(cached)
grouped: Dict[str, List[str]] = {}
field_map: Dict[Tuple[str, str], List[str]] = {}
derived_cache: Dict[str, Any] = {}
results: Dict[str, Any] = {}
for item in fields:
if not item:
continue
field_name = str(item)
for field_name in field_list:
resolved = self.resolve_field(field_name)
if not resolved:
derived = self._resolve_derived_field(
@ -125,6 +141,13 @@ class DataBroker:
field_map.setdefault((table, column), []).append(field_name)
if not grouped:
if cache_key is not None and results:
self._cache_store(
self._latest_cache,
cache_key,
deepcopy(results),
self.latest_cache_size,
)
return results
try:
@ -160,6 +183,23 @@ class DataBroker:
results[original] = value
except sqlite3.OperationalError as exc:
LOGGER.debug("数据库只读连接失败:%s", exc, extra=LOG_EXTRA)
if cache_key is not None:
cached = self._cache_lookup(self._latest_cache, cache_key)
if cached is not None:
LOGGER.debug(
"使用缓存结果 ts_code=%s trade_date=%s",
ts_code,
trade_date,
extra=LOG_EXTRA,
)
return deepcopy(cached)
if cache_key is not None and results:
self._cache_store(
self._latest_cache,
cache_key,
deepcopy(results),
self.latest_cache_size,
)
return results
def fetch_series(
@ -185,6 +225,14 @@ class DataBroker:
)
return []
table, resolved = resolved_field
cache_key: Optional[Tuple[Any, ...]] = None
if self.enable_cache:
cache_key = (table, resolved, ts_code, end_date, window)
cached = self._cache_lookup(self._series_cache, cache_key)
if cached is not None:
return [tuple(item) for item in cached]
query = (
f"SELECT trade_date, {resolved} FROM {table} "
"WHERE ts_code = ? AND trade_date <= ? "
@ -211,6 +259,17 @@ class DataBroker:
exc,
extra=LOG_EXTRA,
)
if cache_key is not None:
cached = self._cache_lookup(self._series_cache, cache_key)
if cached is not None:
LOGGER.debug(
"使用缓存时间序列 table=%s column=%s ts_code=%s",
table,
resolved,
ts_code,
extra=LOG_EXTRA,
)
return [tuple(item) for item in cached]
return []
series: List[Tuple[str, float]] = []
for row in rows:
@ -218,6 +277,13 @@ class DataBroker:
if value is None:
continue
series.append((row["trade_date"], float(value)))
if cache_key is not None and series:
self._cache_store(
self._series_cache,
cache_key,
tuple(series),
self.series_cache_size,
)
return series
def fetch_flags(
@ -612,6 +678,26 @@ class DataBroker:
cache[table] = columns
return columns
def _cache_lookup(self, cache: OrderedDict, key: Tuple[Any, ...]) -> Optional[Any]:
if key in cache:
cache.move_to_end(key)
return cache[key]
return None
def _cache_store(
self,
cache: OrderedDict,
key: Tuple[Any, ...],
value: Any,
limit: int,
) -> None:
if not self.enable_cache or limit <= 0:
return
cache[key] = value
cache.move_to_end(key)
while len(cache) > limit:
cache.popitem(last=False)
def _resolve_column(self, table: str, column: str) -> Optional[str]:
columns = self._get_table_columns(table)
if columns is None: