"""Environment adapters bridging DecisionEnv to tensor-friendly interfaces.""" from __future__ import annotations from dataclasses import dataclass from typing import Dict, Iterable, List, Mapping, Sequence, Tuple import numpy as np from app.backtest.decision_env import DecisionEnv @dataclass class DecisionEnvAdapter: """Wraps :class:`DecisionEnv` to emit numpy arrays for RL algorithms.""" env: DecisionEnv observation_keys: Sequence[str] | None = None def __post_init__(self) -> None: if self.observation_keys is None: reset_obs = self.env.reset() # Exclude bookkeeping fields not useful for learning policy values exclude = {"episode"} self._keys = [key for key in sorted(reset_obs.keys()) if key not in exclude] self._last_reset_obs = reset_obs else: self._keys = list(self.observation_keys) self._last_reset_obs = None @property def action_dim(self) -> int: return self.env.action_dim @property def observation_dim(self) -> int: return len(self._keys) def reset(self) -> Tuple[np.ndarray, Dict[str, float]]: raw = self.env.reset() self._last_reset_obs = raw return self._to_array(raw), raw def step( self, action: Sequence[float] ) -> Tuple[np.ndarray, float, bool, Mapping[str, object], Mapping[str, float]]: obs_dict, reward, done, info = self.env.step(action) return self._to_array(obs_dict), reward, done, info, obs_dict def _to_array(self, payload: Mapping[str, float]) -> np.ndarray: buffer = np.zeros(len(self._keys), dtype=np.float32) for idx, key in enumerate(self._keys): value = payload.get(key) buffer[idx] = float(value) if value is not None else 0.0 return buffer def keys(self) -> List[str]: return list(self._keys)