"""Prompt templates for natural language outputs.""" from __future__ import annotations from typing import Dict, TYPE_CHECKING from .templates import TemplateRegistry if TYPE_CHECKING: # pragma: no cover from app.utils.config import DepartmentSettings from app.agents.departments import DepartmentContext def plan_prompt(data: Dict) -> str: """Build a concise instruction prompt for the LLM.""" _ = data return "你是一个投资助理,请根据提供的数据给出三条要点和两条风险提示。" def department_prompt( settings: "DepartmentSettings", context: "DepartmentContext", supplements: str = "", ) -> str: """Compose a structured prompt for department-level LLM ensemble.""" # Format data for template feature_lines = "\n".join( f"- {key}: {value}" for key, value in sorted(context.features.items()) ) market_lines = "\n".join( f"- {key}: {value}" for key, value in sorted(context.market_snapshot.items()) ) scope_lines = "\n".join(f"- {item}" for item in settings.data_scope) role_description = settings.description.strip() role_instruction = settings.prompt.strip() # Determine template ID based on department settings template_id = f"{settings.code.lower()}_dept" if not TemplateRegistry.get(template_id): template_id = "department_base" # Prepare template variables template_vars = { "title": settings.title, "ts_code": context.ts_code, "trade_date": context.trade_date, "description": role_description or "未配置,默认沿用部门名称所代表的研究职责。", "instruction": role_instruction or "在保持部门风格的前提下,结合可用数据做出审慎判断。", "data_scope": scope_lines or "- 使用系统提供的全部上下文,必要时指出仍需的额外数据。", "features": feature_lines or "- (无)", "market_snapshot": market_lines or "- (无)", "supplements": supplements.strip() or "- 当前无追加数据" } # Get template and format prompt template = TemplateRegistry.get(template_id) return template.format(template_vars)