"""Backtest engine skeleton for daily bar simulation.""" from __future__ import annotations import json import sqlite3 from collections import defaultdict from dataclasses import dataclass, field from datetime import date, datetime from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple from app.agents.base import AgentAction, AgentContext from app.agents.departments import DepartmentManager from app.agents.game import Decision, decide, target_weight_for_action from app.agents.protocols import GameStructure, round_to_dict from app.agents.scopes import scope_for_structures from app.llm.metrics import record_decision as metrics_record_decision from app.agents.registry import default_agents from app.data.schema import initialize_database from app.utils.data_access import DataBroker from app.utils.feature_snapshots import FeatureSnapshotService from app.utils.config import PortfolioSettings, get_config from app.utils.db import db_session from app.utils.logging import get_logger from app.utils import alerts from app.core.indicators import momentum, normalize, rolling_mean, volatility LOGGER = get_logger(__name__) LOG_EXTRA = {"stage": "backtest"} def _valuation_score(value: object, scale: float) -> float: try: numeric = float(value) except (TypeError, ValueError): return 0.0 if numeric <= 0: return 0.0 score = scale / (scale + numeric) return max(0.0, min(1.0, score)) def _volume_ratio_score(value: object) -> float: try: numeric = float(value) except (TypeError, ValueError): return 0.0 if numeric < 0: numeric = 0.0 return max(0.0, min(1.0, numeric / 10.0)) @dataclass class BtConfig: id: str name: str start_date: date end_date: date universe: List[str] params: Dict[str, float] method: str = "nash" game_structures: Optional[List[GameStructure]] = None @dataclass class PortfolioState: cash: float = 1_000_000.0 holdings: Dict[str, float] = field(default_factory=dict) cost_basis: Dict[str, float] = field(default_factory=dict) opened_dates: Dict[str, str] = field(default_factory=dict) realized_pnl: float = 0.0 realized_pnl_by_symbol: Dict[str, float] = field(default_factory=dict) @dataclass class BacktestResult: nav_series: List[Dict[str, float]] = field(default_factory=list) trades: List[Dict[str, str]] = field(default_factory=list) risk_events: List[Dict[str, object]] = field(default_factory=list) data_gaps: List[Dict[str, object]] = field(default_factory=list) @dataclass class BacktestSession: """Holds the mutable state for incremental backtest execution.""" state: PortfolioState result: BacktestResult current_date: date class BacktestEngine: """Runs the multi-agent game inside a daily event-driven loop.""" def __init__(self, cfg: BtConfig) -> None: self.cfg = cfg self.agents = default_agents() app_cfg = get_config() weight_config = app_cfg.agent_weights.as_dict() if app_cfg.agent_weights else {} if weight_config: self.weights = weight_config else: self.weights = {agent.name: 1.0 for agent in self.agents} initialize_database() self.department_manager = ( DepartmentManager(app_cfg) if app_cfg.departments else None ) self.data_broker = DataBroker() params = cfg.params or {} portfolio_cfg = getattr(app_cfg, "portfolio", None) or PortfolioSettings() self.risk_params = { "max_position_weight": float(params.get("max_position_weight", 0.2)), "max_daily_turnover_ratio": float(params.get("max_daily_turnover_ratio", 0.25)), "fee_rate": float(params.get("fee_rate", 0.0005)), "slippage_bps": float(params.get("slippage_bps", 10.0)), } self.initial_cash = max(0.0, float(params.get("initial_capital", portfolio_cfg.initial_capital))) target_return = params.get("target", params.get("target_return", 0.0)) or 0.0 stop_loss = params.get("stop", params.get("stop_loss", 0.0)) or 0.0 hold_days_param = params.get("hold_days", params.get("max_hold_days", 0)) try: max_hold_days = int(hold_days_param) if hold_days_param is not None else 0 except (TypeError, ValueError): max_hold_days = 0 self.trading_rules = { "target_return": float(target_return), "stop_loss": float(stop_loss), "max_hold_days": max(0, max_hold_days), } self._fee_rate = max(self.risk_params["fee_rate"], 0.0) self._slippage_rate = max(self.risk_params["slippage_bps"], 0.0) / 10_000.0 self._turnover_cap = max(self.risk_params["max_daily_turnover_ratio"], 0.0) self._buy_actions = { AgentAction.BUY_S, AgentAction.BUY_M, AgentAction.BUY_L, } self._sell_actions = {AgentAction.SELL} department_scope: set[str] = set() for settings in app_cfg.departments.values(): department_scope.update(settings.data_scope) base_scope = { "daily.close", "daily.open", "daily.high", "daily.low", "daily.pct_chg", "daily.vol", "daily.amount", "daily_basic.turnover_rate", "daily_basic.turnover_rate_f", "daily_basic.volume_ratio", "stk_limit.up_limit", "stk_limit.down_limit", "factors.mom_5", "factors.mom_20", "factors.mom_60", "factors.volat_20", "factors.turn_20", "factors.turn_5", "factors.val_pe_score", "factors.val_pb_score", "factors.volume_ratio_score", "factors.val_multiscore", "factors.risk_penalty", "factors.sent_momentum", "factors.sent_market", "factors.sent_divergence", } selected_structures = ( cfg.game_structures if cfg.game_structures else [ GameStructure.REPEATED, GameStructure.SIGNALING, GameStructure.BAYESIAN, GameStructure.CUSTOM, ] ) self.game_structures = list(dict.fromkeys(selected_structures)) structure_scope = scope_for_structures(self.game_structures) self.required_fields = sorted(base_scope | department_scope | structure_scope) def load_market_data(self, trade_date: date) -> Mapping[str, Dict[str, Any]]: """Load per-stock feature vectors and context slices for the trade date.""" trade_date_str = trade_date.strftime("%Y%m%d") feature_map: Dict[str, Dict[str, Any]] = {} universe = self.cfg.universe or [] snapshot_service = FeatureSnapshotService(self.data_broker) batch_latest = snapshot_service.load_latest( trade_date_str, self.required_fields, universe, auto_refresh=False, ) for ts_code in universe: scope_values = dict(batch_latest.get(ts_code) or {}) missing_fields = [ field for field in self.required_fields if scope_values.get(field) is None ] if missing_fields: fallback = self.data_broker.fetch_latest( ts_code, trade_date_str, missing_fields, auto_refresh=False, ) scope_values.update({k: v for k, v in fallback.items() if v is not None}) missing_fields = [ field for field in self.required_fields if scope_values.get(field) is None ] derived_fields: List[str] = [] if missing_fields: LOGGER.debug( "字段缺失,使用回退或派生数据 ts_code=%s fields=%s", ts_code, missing_fields, extra=LOG_EXTRA, ) closes = self.data_broker.fetch_series( "daily", "close", ts_code, trade_date_str, window=60, auto_refresh=False, # 避免在回测中触发自动补数 ) close_values = [value for _date, value in closes if value is not None] mom5 = scope_values.get("factors.mom_5") if mom5 is None and len(close_values) >= 5: mom5 = momentum(close_values, 5) derived_fields.append("factors.mom_5") mom20 = scope_values.get("factors.mom_20") if mom20 is None and len(close_values) >= 20: mom20 = momentum(close_values, 20) derived_fields.append("factors.mom_20") mom60 = scope_values.get("factors.mom_60") if mom60 is None and len(close_values) >= 60: mom60 = momentum(close_values, 60) derived_fields.append("factors.mom_60") volat20 = scope_values.get("factors.volat_20") if volat20 is None and len(close_values) >= 2: volat20 = volatility(close_values, 20) derived_fields.append("factors.volat_20") turnover_series = self.data_broker.fetch_series( "daily_basic", "turnover_rate", ts_code, trade_date_str, window=20, auto_refresh=False, # 避免在回测中触发自动补数 ) turnover_values = [value for _date, value in turnover_series if value is not None] turn20 = scope_values.get("factors.turn_20") if turn20 is None and turnover_values: turn20 = rolling_mean(turnover_values, 20) derived_fields.append("factors.turn_20") turn5 = scope_values.get("factors.turn_5") if turn5 is None and len(turnover_values) >= 5: turn5 = rolling_mean(turnover_values, 5) derived_fields.append("factors.turn_5") if mom20 is None: mom20 = 0.0 if mom60 is None: mom60 = 0.0 if volat20 is None: volat20 = 0.0 if turn20 is None: turn20 = 0.0 if mom5 is None: mom5 = 0.0 if turn5 is None: turn5 = 0.0 liquidity_score = normalize(turn20, factor=20.0) cost_penalty = normalize( scope_values.get("daily_basic.volume_ratio", 0.0), factor=50.0, ) val_pe = scope_values.get("factors.val_pe_score") if val_pe is None: val_pe = _valuation_score(scope_values.get("daily_basic.pe"), scale=12.0) derived_fields.append("factors.val_pe_score") val_pb = scope_values.get("factors.val_pb_score") if val_pb is None: val_pb = _valuation_score(scope_values.get("daily_basic.pb"), scale=2.5) derived_fields.append("factors.val_pb_score") volume_ratio_score = scope_values.get("factors.volume_ratio_score") if volume_ratio_score is None: volume_ratio_score = _volume_ratio_score(scope_values.get("daily_basic.volume_ratio")) derived_fields.append("factors.volume_ratio_score") if derived_fields: LOGGER.debug( "字段派生完成 ts_code=%s derived=%s", ts_code, derived_fields, extra=LOG_EXTRA, ) sentiment_index = scope_values.get("news.sentiment_index", 0.0) heat_score = scope_values.get("news.heat_score", 0.0) scope_values.setdefault("news.sentiment_index", sentiment_index) scope_values.setdefault("news.heat_score", heat_score) scope_values.setdefault("factors.mom_5", mom5) scope_values.setdefault("factors.mom_20", mom20) scope_values.setdefault("factors.mom_60", mom60) scope_values.setdefault("factors.volat_20", volat20) scope_values.setdefault("factors.turn_20", turn20) scope_values.setdefault("factors.turn_5", turn5) scope_values.setdefault("factors.val_pe_score", val_pe) scope_values.setdefault("factors.val_pb_score", val_pb) scope_values.setdefault("factors.volume_ratio_score", volume_ratio_score) if scope_values.get("macro.industry_heat") is None: scope_values["macro.industry_heat"] = 0.5 if scope_values.get("macro.relative_strength") is None: peer_strength = scope_values.get("index.performance_peers") if peer_strength is None: peer_strength = 0.5 scope_values["macro.relative_strength"] = peer_strength scope_values.setdefault( "index.performance_peers", scope_values.get("macro.relative_strength", 0.5), ) latest_close = scope_values.get("daily.close", 0.0) latest_pct = scope_values.get("daily.pct_chg", 0.0) latest_turnover = scope_values.get("daily_basic.turnover_rate", 0.0) up_limit = scope_values.get("stk_limit.up_limit") limit_up = False if up_limit and latest_close: limit_up = latest_close >= up_limit * 0.999 down_limit = scope_values.get("stk_limit.down_limit") limit_down = False if down_limit and latest_close: limit_down = latest_close <= down_limit * 1.001 is_suspended = self.data_broker.fetch_flags( "suspend", ts_code, trade_date_str, "", [], auto_refresh=False, # 避免在回测中触发自动补数 ) features = { "mom_5": mom5, "mom_20": mom20, "mom_60": mom60, "volat_20": volat20, "turn_20": turn20, "turn_5": turn5, "liquidity_score": liquidity_score, "cost_penalty": cost_penalty, "news_heat": heat_score, "news_sentiment": sentiment_index, "industry_heat": scope_values.get("macro.industry_heat", 0.0), "industry_relative_mom": scope_values.get( "macro.relative_strength", scope_values.get("index.performance_peers", 0.0), ), "risk_penalty": min(1.0, volat20 * 5.0), "valuation_pe_score": val_pe, "valuation_pb_score": val_pb, "volume_ratio_score": volume_ratio_score, "is_suspended": is_suspended, "limit_up": limit_up, "limit_down": limit_down, "position_limit": False, } market_snapshot = { "close": latest_close, "pct_chg": latest_pct, "turnover_rate": latest_turnover, "volume": scope_values.get("daily.vol", 0.0), "amount": scope_values.get("daily.amount", 0.0), "up_limit": up_limit, "down_limit": down_limit, } raw_payload = { "scope_values": scope_values, "close_series": closes, "turnover_series": turnover_series, "required_fields": self.required_fields, "missing_fields": missing_fields, "derived_fields": derived_fields, } feature_map[ts_code] = { "features": features, "market_snapshot": market_snapshot, "raw": raw_payload, } return feature_map def simulate_day( self, trade_date: date, state: PortfolioState, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> List[tuple[str, AgentContext, Decision]]: feature_map = self.load_market_data(trade_date) records: List[tuple[str, AgentContext, Decision]] = [] for ts_code, payload in feature_map.items(): features = payload.get("features", {}) market_snapshot = payload.get("market_snapshot", {}) raw = payload.get("raw", {}) context = AgentContext( ts_code=ts_code, trade_date=trade_date.isoformat(), features=features, market_snapshot=market_snapshot, raw=raw, ) decision = decide( context, self.agents, self.weights, method=self.cfg.method, department_manager=self.department_manager, ) try: metrics_record_decision( ts_code=ts_code, trade_date=context.trade_date, action=decision.action.value, confidence=decision.confidence, summary=_extract_summary(decision), source="backtest", departments={ code: dept.to_dict() for code, dept in decision.department_decisions.items() }, ) except Exception: # noqa: BLE001 LOGGER.debug("记录决策指标失败", extra=LOG_EXTRA) records.append((ts_code, context, decision)) self.record_agent_state(context, decision) if decision_callback: try: decision_callback(ts_code, trade_date, context, decision) except Exception: # noqa: BLE001 LOGGER.exception("决策回调执行失败", extra=LOG_EXTRA) return records def record_agent_state(self, context: AgentContext, decision: Decision) -> None: payload = { "trade_date": context.trade_date, "ts_code": context.ts_code, "action": decision.action.value, "confidence": decision.confidence, "department_votes": decision.department_votes, "requires_review": decision.requires_review, "departments": { code: dept.to_dict() for code, dept in decision.department_decisions.items() }, } combined_weights = dict(self.weights) if self.department_manager: for code, agent in self.department_manager.agents.items(): key = f"dept_{code}" combined_weights[key] = agent.settings.weight feasible_json = json.dumps( [action.value for action in decision.feasible_actions], ensure_ascii=False, ) rows = [] for agent_name, weight in combined_weights.items(): action_scores = { action.value: float(decision.utilities.get(action, {}).get(agent_name, 0.0)) for action in decision.utilities.keys() } best_action = decision.action.value if action_scores: best_action = max(action_scores.items(), key=lambda item: item[1])[0] metadata: Dict[str, object] = {} if agent_name.startswith("dept_"): dept_code = agent_name.split("dept_", 1)[-1] dept_decision = decision.department_decisions.get(dept_code) if dept_decision: metadata = { "_summary": dept_decision.summary, "_signals": dept_decision.signals, "_risks": dept_decision.risks, "_confidence": dept_decision.confidence, } if dept_decision.supplements: metadata["_supplements"] = dept_decision.supplements if dept_decision.dialogue: metadata["_dialogue"] = dept_decision.dialogue if dept_decision.telemetry: metadata["_telemetry"] = dept_decision.telemetry payload_json = {**action_scores, **metadata} rows.append( ( context.trade_date, context.ts_code, agent_name, best_action, json.dumps(payload_json, ensure_ascii=False), feasible_json, float(weight), ) ) round_payload = [round_to_dict(summary) for summary in decision.rounds] global_payload = { "_confidence": decision.confidence, "_target_weight": decision.target_weight, "_department_votes": decision.department_votes, "_requires_review": decision.requires_review, "_scope_values": context.raw.get("scope_values", {}), "_close_series": context.raw.get("close_series", []), "_turnover_series": context.raw.get("turnover_series", []), "_department_supplements": { code: dept.supplements for code, dept in decision.department_decisions.items() if dept.supplements }, "_department_dialogue": { code: dept.dialogue for code, dept in decision.department_decisions.items() if dept.dialogue }, "_department_telemetry": { code: dept.telemetry for code, dept in decision.department_decisions.items() if dept.telemetry }, "_rounds": round_payload, "_risk_assessment": ( decision.risk_assessment.to_dict() if decision.risk_assessment else None ), } rows.append( ( context.trade_date, context.ts_code, "global", decision.action.value, json.dumps(global_payload, ensure_ascii=False), feasible_json, 1.0, ) ) try: with db_session() as conn: conn.executemany( """ INSERT OR REPLACE INTO agent_utils (trade_date, ts_code, agent, action, utils, feasible, weight) VALUES (?, ?, ?, ?, ?, ?, ?) """, rows, ) except Exception: LOGGER.exception("写入 agent_utils 失败", extra=LOG_EXTRA) _ = payload # TODO: persist payload into bt_trades / audit tables when schema is ready. try: self._record_investment_candidate(context, decision) except Exception: # noqa: BLE001 LOGGER.exception("写入 investment_pool 失败", extra=LOG_EXTRA) def _apply_portfolio_updates( self, trade_date: date, state: PortfolioState, records: List[tuple[str, AgentContext, Decision]], result: BacktestResult, ) -> None: trade_date_str = trade_date.isoformat() price_map: Dict[str, float] = {} decisions_map: Dict[str, Decision] = {} feature_cache: Dict[str, Mapping[str, Any]] = {} missing_counts: Dict[str, int] = defaultdict(int) derived_counts: Dict[str, int] = defaultdict(int) for ts_code, context, decision in records: features = context.features or {} if not isinstance(features, Mapping): features = {} feature_cache[ts_code] = features scope_values = context.raw.get("scope_values") if context.raw else {} if not isinstance(scope_values, Mapping): scope_values = {} raw_missing = context.raw.get("missing_fields") if context.raw else [] raw_derived = context.raw.get("derived_fields") if context.raw else [] for field in raw_missing or []: missing_counts[field] += 1 for field in raw_derived or []: derived_counts[field] += 1 price = scope_values.get("daily.close") or scope_values.get("close") if price is None: continue try: price = float(price) except (TypeError, ValueError): continue price_map[ts_code] = price decisions_map[ts_code] = decision trade_date_compact = trade_date.strftime("%Y%m%d") missing_prices: set[str] = { code for code in decisions_map.keys() if code not in price_map } missing_prices.update(code for code in state.holdings.keys() if code not in price_map) if missing_prices: for ts_code in sorted(missing_prices): try: fetched = self.data_broker.fetch_latest( ts_code, trade_date_compact, ["daily.close"], auto_refresh=False, ) except Exception: # noqa: BLE001 LOGGER.debug( "回补价格失败 ts_code=%s date=%s", ts_code, trade_date_compact, extra=LOG_EXTRA, ) continue fallback_price = fetched.get("daily.close") if fallback_price is None: continue try: price_map[ts_code] = float(fallback_price) except (TypeError, ValueError): LOGGER.debug( "价格解析失败 ts_code=%s raw=%s", ts_code, fallback_price, extra=LOG_EXTRA, ) unresolved = [code for code in missing_prices if code not in price_map] if unresolved: LOGGER.warning( "缺少收盘价,回测将跳过估值:codes=%s date=%s", unresolved, trade_date_compact, extra=LOG_EXTRA, ) portfolio_value_before = state.cash for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) if price is None: continue portfolio_value_before += qty * price if portfolio_value_before <= 0: portfolio_value_before = state.cash or 1.0 daily_turnover = 0.0 executed_trades: List[Dict[str, Any]] = [] risk_events: List[Dict[str, Any]] = [] def _record_risk( ts_code: str, reason: str, decision: Decision, extra: Optional[Dict[str, Any]] = None, action_override: Optional[AgentAction] = None, target_weight_override: Optional[float] = None, ) -> None: payload = { "trade_date": trade_date_str, "ts_code": ts_code, "action": (action_override or decision.action).value, "target_weight": ( target_weight_override if target_weight_override is not None else decision.target_weight ), "confidence": decision.confidence, "reason": reason, } if extra: payload.update(extra) risk_events.append(payload) risk_meta = payload.get("risk_assessment") if isinstance(payload.get("risk_assessment"), dict) else extra.get("risk_assessment") if extra else None status = None if isinstance(risk_meta, dict): status = risk_meta.get("status") if status == "blocked": try: alerts.add_warning( "backtest_risk", f"{ts_code} 风险阻断: {reason}", detail=json.dumps(payload, ensure_ascii=False), ) except Exception: # noqa: BLE001 LOGGER.debug("记录风险告警失败", extra=LOG_EXTRA) for ts_code, decision in decisions_map.items(): price = price_map.get(ts_code) if price is None or price <= 0: continue features = feature_cache.get(ts_code, {}) current_qty = state.holdings.get(ts_code, 0.0) current_cost_basis = float(state.cost_basis.get(ts_code, 0.0) or 0.0) liquidity_score = float(features.get("liquidity_score") or 0.0) risk_penalty = float(features.get("risk_penalty") or 0.0) is_suspended = bool(features.get("is_suspended")) limit_up = bool(features.get("limit_up")) limit_down = bool(features.get("limit_down")) position_limit = bool(features.get("position_limit")) risk = decision.risk_assessment effective_action = decision.action effective_weight = decision.target_weight if risk: risk_payload = risk.to_dict() risk_payload.setdefault("applied_action", effective_action.value) if risk.recommended_action: effective_action = risk.recommended_action risk_payload["applied_action"] = effective_action.value effective_weight = target_weight_for_action(effective_action) if risk.status != "ok": _record_risk( ts_code, risk.reason, decision, extra={"risk_assessment": risk_payload}, action_override=effective_action, target_weight_override=effective_weight, ) if risk.status == "blocked": continue rule_override_action: Optional[AgentAction] = None rule_override_reason: Optional[str] = None gain_ratio: Optional[float] = None if current_qty > 0 and current_cost_basis: try: gain_ratio = (price / current_cost_basis) - 1.0 except ZeroDivisionError: gain_ratio = None target_return = self.trading_rules.get("target_return", 0.0) if ( rule_override_action is None and gain_ratio is not None and target_return and gain_ratio >= target_return ): rule_override_action = AgentAction.SELL rule_override_reason = "target_reached" stop_loss = self.trading_rules.get("stop_loss", 0.0) if ( rule_override_action is None and gain_ratio is not None and stop_loss and gain_ratio <= stop_loss ): rule_override_action = AgentAction.SELL rule_override_reason = "stop_loss" max_hold_days = self.trading_rules.get("max_hold_days", 0) if ( rule_override_action is None and max_hold_days and max_hold_days > 0 and current_qty > 0 ): opened_str = state.opened_dates.get(ts_code) opened_dt: Optional[date] = None if opened_str: try: opened_dt = date.fromisoformat(str(opened_str)) except ValueError: try: opened_dt = datetime.strptime(str(opened_str), "%Y%m%d").date() except ValueError: opened_dt = None LOGGER.debug( "无法解析持仓日期 ts_code=%s value=%s", ts_code, opened_str, extra=LOG_EXTRA, ) if opened_dt: holding_days = (trade_date - opened_dt).days if holding_days >= max_hold_days: rule_override_action = AgentAction.SELL rule_override_reason = "holding_period" if rule_override_action and rule_override_action is not effective_action: effective_action = rule_override_action effective_weight = target_weight_for_action(effective_action) _record_risk( ts_code, rule_override_reason or "rule_override", decision, extra={ "rule_trigger": rule_override_reason, "gain_ratio": gain_ratio, }, action_override=effective_action, target_weight_override=effective_weight, ) if is_suspended: _record_risk(ts_code, "suspended", decision) continue if effective_action in self._buy_actions: if limit_up: _record_risk(ts_code, "limit_up", decision, action_override=effective_action) continue if position_limit: _record_risk(ts_code, "position_limit", decision, action_override=effective_action) continue if effective_action in self._sell_actions and limit_down: _record_risk(ts_code, "limit_down", decision, action_override=effective_action) continue effective_weight_value = max(effective_weight, 0.0) if effective_action in self._buy_actions: capped_weight = min(effective_weight, self.risk_params["max_position_weight"]) effective_weight_value = capped_weight * max(0.0, 1.0 - risk_penalty) elif effective_action in self._sell_actions: effective_weight_value = 0.0 desired_qty = current_qty if effective_action in self._sell_actions: desired_qty = 0.0 elif effective_action in self._buy_actions or effective_weight_value > 0.0: desired_value = max(effective_weight_value, 0.0) * portfolio_value_before desired_qty = desired_value / price if price > 0 else current_qty delta = desired_qty - current_qty if abs(delta) < 1e-6: continue if delta > 0 and self._turnover_cap > 0: liquidity_scalar = max(liquidity_score, 0.1) max_trade_value = self._turnover_cap * portfolio_value_before * liquidity_scalar if max_trade_value > 0 and delta * price > max_trade_value: delta = max_trade_value / price desired_qty = current_qty + delta if delta > 0: trade_price = price * (1.0 + self._slippage_rate) per_share_cost = trade_price * (1.0 + self._fee_rate) if per_share_cost <= 0: _record_risk(ts_code, "invalid_price", decision) continue max_affordable = state.cash / per_share_cost if per_share_cost > 0 else 0.0 if delta > max_affordable: if max_affordable <= 1e-6: _record_risk(ts_code, "insufficient_cash", decision) continue delta = max_affordable desired_qty = current_qty + delta trade_value = delta * trade_price fee = trade_value * self._fee_rate total_cash_needed = trade_value + fee if total_cash_needed <= 0: _record_risk(ts_code, "invalid_trade", decision) continue previous_cost = current_cost_basis * current_qty new_qty = current_qty + delta state.cost_basis[ts_code] = ( (previous_cost + trade_value + fee) / new_qty if new_qty > 0 else 0.0 ) state.cash -= total_cash_needed state.holdings[ts_code] = new_qty state.opened_dates.setdefault(ts_code, trade_date_str) daily_turnover += trade_value executed_trades.append( { "trade_date": trade_date_str, "ts_code": ts_code, "action": "buy", "quantity": float(delta), "price": trade_price, "base_price": price, "value": trade_value, "fee": fee, "slippage": trade_price - price, "confidence": decision.confidence, "target_weight": decision.target_weight, "effective_weight": effective_weight_value, "effective_action": effective_action.value, "risk_penalty": risk_penalty, "liquidity_score": liquidity_score, "status": "executed", } ) else: sell_qty = min(abs(delta), current_qty) if sell_qty <= 1e-6: continue trade_price = price * (1.0 - self._slippage_rate) trade_price = max(trade_price, 0.0) gross_value = sell_qty * trade_price fee = gross_value * self._fee_rate proceeds = gross_value - fee realized = (trade_price - current_cost_basis) * sell_qty - fee state.cash += proceeds state.realized_pnl += realized state.realized_pnl_by_symbol[ts_code] = ( state.realized_pnl_by_symbol.get(ts_code, 0.0) + realized ) new_qty = current_qty - sell_qty if new_qty <= 1e-6: state.holdings.pop(ts_code, None) state.cost_basis.pop(ts_code, None) state.opened_dates.pop(ts_code, None) else: state.holdings[ts_code] = new_qty daily_turnover += gross_value executed_trades.append( { "trade_date": trade_date_str, "ts_code": ts_code, "action": "sell", "quantity": float(sell_qty), "price": trade_price, "base_price": price, "value": gross_value, "fee": fee, "slippage": price - trade_price, "confidence": decision.confidence, "target_weight": decision.target_weight, "effective_weight": effective_weight_value, "effective_action": effective_action.value, "risk_penalty": risk_penalty, "liquidity_score": liquidity_score, "realized_pnl": realized, "status": "executed", } ) if missing_counts or derived_counts: result.data_gaps.append( { "trade_date": trade_date_str, "missing_fields": dict(sorted(missing_counts.items())), "derived_fields": dict(sorted(derived_counts.items())), } ) market_value = 0.0 unrealized_pnl = 0.0 for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) if price is None: continue market_value += qty * price cost_basis = state.cost_basis.get(ts_code, 0.0) unrealized_pnl += (price - cost_basis) * qty nav = state.cash + market_value turnover_ratio = daily_turnover / nav if nav else 0.0 result.nav_series.append( { "trade_date": trade_date_str, "nav": nav, "cash": state.cash, "market_value": market_value, "realized_pnl": state.realized_pnl, "unrealized_pnl": unrealized_pnl, "turnover": daily_turnover, "turnover_ratio": turnover_ratio, } ) if executed_trades: result.trades.extend(executed_trades) if risk_events: result.risk_events.extend(risk_events) try: self._persist_portfolio( self.cfg.id, trade_date_str, state, market_value, unrealized_pnl, executed_trades, price_map, decisions_map, daily_turnover, ) except Exception: # noqa: BLE001 LOGGER.exception("持仓数据写入失败", extra=LOG_EXTRA) def _record_investment_candidate( self, context: AgentContext, decision: Decision ) -> None: status = _candidate_status(decision.action, decision.requires_review) summary = _extract_summary(decision) if not summary: collected_signals: List[str] = [] for dept in decision.department_decisions.values(): collected_signals.extend(dept.signals) summary = ";".join(str(sig) for sig in collected_signals[:3]) metadata = { "target_weight": decision.target_weight, "feasible_actions": [action.value for action in decision.feasible_actions], "department_votes": decision.department_votes, "requires_review": decision.requires_review, "confidence": decision.confidence, } if decision.department_decisions: metadata["departments"] = { code: dept.to_dict() for code, dept in decision.department_decisions.items() } stock_info = self.data_broker.get_stock_info(context.ts_code, context.trade_date) name = stock_info.get("name") if stock_info else None industry = stock_info.get("industry") if stock_info else None with db_session() as conn: self._ensure_investment_pool_columns(conn) conn.execute( """ INSERT OR REPLACE INTO investment_pool (trade_date, ts_code, score, status, rationale, tags, metadata, name, industry) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( context.trade_date, context.ts_code, float(decision.confidence or 0.0), status, summary or None, json.dumps(_department_tags(decision), ensure_ascii=False), json.dumps(metadata, ensure_ascii=False), name, industry, ), ) @staticmethod def _ensure_investment_pool_columns(conn: sqlite3.Connection) -> None: try: info = conn.execute("PRAGMA table_info(investment_pool)").fetchall() except sqlite3.Error: return columns = { (row[1] if not isinstance(row, sqlite3.Row) else row["name"]) for row in info if row is not None } if "name" not in columns: try: conn.execute("ALTER TABLE investment_pool ADD COLUMN name TEXT") except sqlite3.Error: pass if "industry" not in columns: try: conn.execute("ALTER TABLE investment_pool ADD COLUMN industry TEXT") except sqlite3.Error: pass if "created_at" not in columns: try: conn.execute( "ALTER TABLE investment_pool ADD COLUMN created_at TEXT DEFAULT (strftime('%Y-%m-%dT%H:%M:%fZ','now'))" ) except sqlite3.Error: try: conn.execute("ALTER TABLE investment_pool ADD COLUMN created_at TEXT") except sqlite3.Error: pass def _reset_bt_portfolio_records(self) -> None: cfg_id = self.cfg.id if not cfg_id: return try: with db_session() as conn: conn.execute("DELETE FROM bt_portfolio_snapshots WHERE cfg_id = ?", (cfg_id,)) conn.execute("DELETE FROM bt_portfolio_positions WHERE cfg_id = ?", (cfg_id,)) conn.execute("DELETE FROM bt_portfolio_trades WHERE cfg_id = ?", (cfg_id,)) except Exception: # noqa: BLE001 LOGGER.exception("清理回测投资组合数据失败 cfg_id=%s", cfg_id, extra=LOG_EXTRA) def _persist_portfolio( self, cfg_id: str, trade_date: str, state: PortfolioState, market_value: float, unrealized_pnl: float, trades: List[Dict[str, Any]], price_map: Dict[str, float], decisions_map: Dict[str, Decision], daily_turnover: float, ) -> None: holdings_rows: List[tuple] = [] for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) market_val = qty * price if price is not None else None cost_basis = state.cost_basis.get(ts_code, 0.0) unrealized = (price - cost_basis) * qty if price is not None else None decision = decisions_map.get(ts_code) target_weight = decision.target_weight if decision else None metadata = { "last_action": decision.action.value if decision else None, "confidence": decision.confidence if decision else None, } opened_date = state.opened_dates.get(ts_code, trade_date) if hasattr(opened_date, "isoformat"): opened_date = opened_date.isoformat() # type: ignore[attr-defined] holdings_rows.append( ( cfg_id, trade_date, ts_code, opened_date, None, qty, cost_basis, price, market_val, state.realized_pnl_by_symbol.get(ts_code, 0.0), unrealized, target_weight, "open", None, json.dumps(metadata, ensure_ascii=False), ) ) total_value = market_value + state.cash turnover_ratio = daily_turnover / total_value if total_value else 0.0 snapshot_metadata = { "holdings": len(state.holdings), "turnover_value": daily_turnover, "turnover_ratio": turnover_ratio, "trade_count": len(trades), } exposure = (market_value / total_value) if total_value else 0.0 net_flow = 0.0 for trade in trades: value = float(trade.get("value", 0.0) or 0.0) fee = float(trade.get("fee", 0.0) or 0.0) action = str(trade.get("action", "")).lower() if action.startswith("buy"): net_flow -= value + fee elif action.startswith("sell"): net_flow += value - fee with db_session() as conn: conn.execute( """ INSERT OR REPLACE INTO bt_portfolio_snapshots (cfg_id, trade_date, total_value, cash, invested_value, unrealized_pnl, realized_pnl, net_flow, exposure, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( cfg_id, trade_date, market_value + state.cash, state.cash, market_value, unrealized_pnl, state.realized_pnl, net_flow, exposure, json.dumps(snapshot_metadata, ensure_ascii=False), ), ) conn.execute( "DELETE FROM bt_portfolio_positions WHERE cfg_id = ? AND trade_date = ?", (cfg_id, trade_date), ) if holdings_rows: conn.executemany( """ INSERT INTO bt_portfolio_positions (cfg_id, trade_date, ts_code, opened_date, closed_date, quantity, cost_price, market_price, market_value, realized_pnl, unrealized_pnl, target_weight, status, notes, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, holdings_rows, ) if trades: conn.execute( "DELETE FROM bt_portfolio_trades WHERE cfg_id = ? AND trade_date = ?", (cfg_id, trade_date), ) conn.executemany( """ INSERT INTO bt_portfolio_trades (cfg_id, trade_date, ts_code, action, quantity, price, fee, source, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?) """, [ ( cfg_id, trade["trade_date"], trade["ts_code"], trade["action"], trade["quantity"], trade["price"], float(trade.get("fee", 0.0)), str(trade.get("source") or "backtest"), json.dumps(trade, ensure_ascii=False), ) for trade in trades ], ) def start_session(self) -> BacktestSession: """Initialise a new incremental backtest session.""" return BacktestSession( state=PortfolioState(cash=self.initial_cash), result=BacktestResult(), current_date=self.cfg.start_date, ) def step_session( self, session: BacktestSession, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> Tuple[Iterable[Dict[str, Any]], bool]: """Advance the session by a single trade date. Returns ``(records, done)`` where ``records`` is the raw output of :meth:`simulate_day` and ``done`` indicates whether the session reached the end date after this step. """ if session.current_date > self.cfg.end_date: return [], True trade_date = session.current_date records = self.simulate_day(trade_date, session.state, decision_callback) self._apply_portfolio_updates(trade_date, session.state, records, session.result) session.current_date = date.fromordinal(trade_date.toordinal() + 1) done = session.current_date > self.cfg.end_date return records, done def run( self, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: self._reset_bt_portfolio_records() session = self.start_session() if session.current_date > self.cfg.end_date: return session.result while session.current_date <= self.cfg.end_date: self.step_session(session, decision_callback) return session.result def run_backtest( cfg: BtConfig, *, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: engine = BacktestEngine(cfg) result = engine.run(decision_callback=decision_callback) _persist_backtest_results(cfg, result) return result def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None: """Persist backtest configuration, NAV path, trades and summary metrics.""" nav_rows: List[tuple] = [] trade_rows: List[tuple] = [] risk_rows: List[tuple] = [] summary_payload: Dict[str, object] = {} turnover_sum = 0.0 if result.nav_series: first_nav = float(result.nav_series[0].get("nav", 0.0) or 0.0) peak_nav = first_nav prev_nav: Optional[float] = None max_drawdown = 0.0 for entry in result.nav_series: trade_date = str(entry.get("trade_date", "")) nav_val = float(entry.get("nav", 0.0) or 0.0) cash = float(entry.get("cash", 0.0) or 0.0) market_value = float(entry.get("market_value", 0.0) or 0.0) realized = float(entry.get("realized_pnl", 0.0) or 0.0) unrealized = float(entry.get("unrealized_pnl", 0.0) or 0.0) turnover = float(entry.get("turnover", 0.0) or 0.0) if nav_val > peak_nav: peak_nav = nav_val drawdown = (peak_nav - nav_val) / peak_nav if peak_nav else 0.0 max_drawdown = max(max_drawdown, drawdown) if prev_nav is None or prev_nav == 0.0: ret_val = 0.0 else: ret_val = (nav_val / prev_nav) - 1.0 prev_nav = nav_val info_payload = { "cash": cash, "market_value": market_value, "realized_pnl": realized, "unrealized_pnl": unrealized, "turnover": turnover, } turnover_sum += turnover nav_rows.append( ( cfg.id, trade_date, nav_val, float(ret_val), None, None, float(drawdown), json.dumps(info_payload, ensure_ascii=False), ) ) last_nav = float(result.nav_series[-1].get("nav", 0.0) or 0.0) total_return = (last_nav / first_nav - 1.0) if first_nav else 0.0 summary_payload.update( { "start_nav": first_nav, "end_nav": last_nav, "total_return": total_return, "max_drawdown": max_drawdown, "days": len(result.nav_series), } ) if turnover_sum: summary_payload["total_turnover"] = turnover_sum summary_payload["avg_turnover"] = turnover_sum / max(len(result.nav_series), 1) if result.trades: for trade in result.trades: trade_date = str(trade.get("trade_date", "")) ts_code = str(trade.get("ts_code", "")) side = str(trade.get("action", "")).lower() price = float(trade.get("price", 0.0) or 0.0) qty = float(trade.get("quantity", 0.0) or 0.0) reason_payload = { "confidence": trade.get("confidence"), "target_weight": trade.get("target_weight"), "value": trade.get("value"), "fee": trade.get("fee"), "slippage": trade.get("slippage"), "risk_penalty": trade.get("risk_penalty"), "liquidity_score": trade.get("liquidity_score"), } trade_rows.append( ( cfg.id, ts_code, trade_date, side, price, qty, json.dumps(reason_payload, ensure_ascii=False), ) ) summary_payload["trade_count"] = len(trade_rows) if result.risk_events: summary_payload["risk_events"] = len(result.risk_events) breakdown: Dict[str, int] = {} for event in result.risk_events: reason = str(event.get("reason") or "unknown") breakdown[reason] = breakdown.get(reason, 0) + 1 risk_rows.append( ( cfg.id, str(event.get("trade_date", "")), str(event.get("ts_code", "")), reason, str(event.get("action", "")), float(event.get("target_weight", 0.0) or 0.0), float(event.get("confidence", 0.0) or 0.0), json.dumps(event, ensure_ascii=False), ) ) summary_payload["risk_breakdown"] = breakdown if getattr(result, "data_gaps", None): missing_total: Dict[str, int] = defaultdict(int) derived_total: Dict[str, int] = defaultdict(int) for gap in result.data_gaps: for field, count in (gap.get("missing_fields") or {}).items(): missing_total[field] += int(count) for field, count in (gap.get("derived_fields") or {}).items(): derived_total[field] += int(count) if missing_total: summary_payload["missing_field_counts"] = dict(missing_total) if derived_total: summary_payload["derived_field_counts"] = dict(derived_total) cfg_payload = { "id": cfg.id, "name": cfg.name, "start_date": cfg.start_date.isoformat(), "end_date": cfg.end_date.isoformat(), "universe": cfg.universe, "params": cfg.params, "method": cfg.method, } with db_session() as conn: conn.execute( """ INSERT OR REPLACE INTO bt_config (id, name, start_date, end_date, universe, params) VALUES (?, ?, ?, ?, ?, ?) """, ( cfg.id, cfg.name, cfg.start_date.isoformat(), cfg.end_date.isoformat(), ",".join(cfg.universe), json.dumps(cfg.params, ensure_ascii=False), ), ) conn.execute("DELETE FROM bt_nav WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_trades WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_risk_events WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_report WHERE cfg_id = ?", (cfg.id,)) if nav_rows: conn.executemany( """ INSERT INTO bt_nav (cfg_id, trade_date, nav, ret, pos_count, turnover, dd, info) VALUES (?, ?, ?, ?, ?, ?, ?, ?) """, nav_rows, ) if trade_rows: conn.executemany( """ INSERT INTO bt_trades (cfg_id, ts_code, trade_date, side, price, qty, reason) VALUES (?, ?, ?, ?, ?, ?, ?) """, trade_rows, ) if risk_rows: conn.executemany( """ INSERT INTO bt_risk_events (cfg_id, trade_date, ts_code, reason, action, target_weight, confidence, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?) """, risk_rows, ) summary_payload.setdefault("universe", cfg.universe) summary_payload.setdefault("method", cfg.method) conn.execute( """ INSERT OR REPLACE INTO bt_report (cfg_id, summary) VALUES (?, ?) """, (cfg.id, json.dumps(summary_payload, ensure_ascii=False, default=str)), ) def _candidate_status(action: AgentAction, requires_review: bool) -> str: mapping = { AgentAction.SELL: "exit", AgentAction.HOLD: "watch", AgentAction.BUY_S: "buy_s", AgentAction.BUY_M: "buy_m", AgentAction.BUY_L: "buy_l", } base = mapping.get(action, "candidate") if requires_review: return f"{base}_review" return base def _extract_summary(decision: Decision) -> str: for dept_decision in decision.department_decisions.values(): summary = getattr(dept_decision, "summary", "") if summary: return str(summary) return "" def _department_tags(decision: Decision) -> List[str]: tags: List[str] = [] for code, dept in decision.department_decisions.items(): action = getattr(dept, "action", None) if action is None: continue tags.append(f"{code}:{action.value}") return sorted(set(tags))