"""Streamlit UI scaffold for the investment assistant.""" from __future__ import annotations import sys from dataclasses import asdict from datetime import date, timedelta from pathlib import Path from typing import List ROOT = Path(__file__).resolve().parents[2] if str(ROOT) not in sys.path: sys.path.insert(0, str(ROOT)) import pandas as pd import plotly.express as px import plotly.graph_objects as go import streamlit as st from app.backtest.engine import BtConfig, run_backtest from app.data.schema import initialize_database from app.ingest.checker import run_boot_check from app.ingest.tushare import FetchJob, run_ingestion from app.llm.client import llm_config_snapshot, run_llm from app.llm.explain import make_human_card from app.utils.config import ( DEFAULT_LLM_BASE_URLS, DEFAULT_LLM_MODEL_OPTIONS, DEFAULT_LLM_MODELS, LLMEndpoint, get_config, save_config, ) from app.utils.db import db_session from app.utils.logging import get_logger LOGGER = get_logger(__name__) LOG_EXTRA = {"stage": "ui"} def _load_stock_options(limit: int = 500) -> list[str]: try: with db_session(read_only=True) as conn: rows = conn.execute( "SELECT ts_code, name FROM stock_basic WHERE list_status = 'L' ORDER BY ts_code" ).fetchall() except Exception: LOGGER.exception("加载股票列表失败", extra=LOG_EXTRA) return [] options: list[str] = [] for row in rows[:limit]: code = row["ts_code"] name = row["name"] or "" label = f"{code} | {name}" if name else code options.append(label) LOGGER.info("加载股票选项完成,数量=%s", len(options), extra=LOG_EXTRA) return options def _parse_ts_code(selection: str) -> str: return selection.split(' | ')[0].strip().upper() def _load_daily_frame(ts_code: str, start: date, end: date) -> pd.DataFrame: LOGGER.info( "加载行情数据:ts_code=%s start=%s end=%s", ts_code, start, end, extra=LOG_EXTRA, ) start_str = start.strftime('%Y%m%d') end_str = end.strftime('%Y%m%d') range_query = ( "SELECT trade_date, open, high, low, close, vol, amount " "FROM daily WHERE ts_code = ? AND trade_date BETWEEN ? AND ? ORDER BY trade_date" ) fallback_query = ( "SELECT trade_date, open, high, low, close, vol, amount " "FROM daily WHERE ts_code = ? ORDER BY trade_date DESC LIMIT 200" ) with db_session(read_only=True) as conn: df = pd.read_sql_query(range_query, conn, params=(ts_code, start_str, end_str)) if df.empty: df = pd.read_sql_query(fallback_query, conn, params=(ts_code,)) if df.empty: LOGGER.warning( "行情数据为空:ts_code=%s start=%s end=%s", ts_code, start, end, extra=LOG_EXTRA, ) return df df = df.sort_values('trade_date') df['trade_date'] = pd.to_datetime(df['trade_date']) df.set_index('trade_date', inplace=True) LOGGER.info("行情数据加载完成:条数=%s", len(df), extra=LOG_EXTRA) return df def render_today_plan() -> None: LOGGER.info("渲染今日计划页面", extra=LOG_EXTRA) st.header("今日计划") st.write("待接入候选池筛选与多智能体决策结果。") sample = make_human_card("000001.SZ", "2025-01-01", {"decisions": []}) LOGGER.debug("示例卡片内容:%s", sample, extra=LOG_EXTRA) st.json(sample) def render_backtest() -> None: LOGGER.info("渲染回测页面", extra=LOG_EXTRA) st.header("回测与复盘") st.write("在此运行回测、展示净值曲线与代理贡献。") default_start = date(2020, 1, 1) default_end = date(2020, 3, 31) LOGGER.debug( "回测默认参数:start=%s end=%s universe=%s target=%s stop=%s hold_days=%s", default_start, default_end, "000001.SZ", 0.035, -0.015, 10, extra=LOG_EXTRA, ) col1, col2 = st.columns(2) start_date = col1.date_input("开始日期", value=default_start) end_date = col2.date_input("结束日期", value=default_end) universe_text = st.text_input("股票列表(逗号分隔)", value="000001.SZ") target = st.number_input("目标收益(例:0.035 表示 3.5%)", value=0.035, step=0.005, format="%.3f") stop = st.number_input("止损收益(例:-0.015 表示 -1.5%)", value=-0.015, step=0.005, format="%.3f") hold_days = st.number_input("持有期(交易日)", value=10, step=1) LOGGER.debug( "当前回测表单输入:start=%s end=%s universe_text=%s target=%.3f stop=%.3f hold_days=%s", start_date, end_date, universe_text, target, stop, hold_days, extra=LOG_EXTRA, ) if st.button("运行回测"): LOGGER.info("用户点击运行回测按钮", extra=LOG_EXTRA) with st.spinner("正在执行回测..."): try: universe = [code.strip() for code in universe_text.split(',') if code.strip()] LOGGER.info( "回测参数:start=%s end=%s universe=%s target=%s stop=%s hold_days=%s", start_date, end_date, universe, target, stop, hold_days, extra=LOG_EXTRA, ) cfg = BtConfig( id="streamlit_demo", name="Streamlit Demo Strategy", start_date=start_date, end_date=end_date, universe=universe, params={ "target": target, "stop": stop, "hold_days": int(hold_days), }, ) result = run_backtest(cfg) LOGGER.info( "回测完成:nav_records=%s trades=%s", len(result.nav_series), len(result.trades), extra=LOG_EXTRA, ) st.success("回测执行完成,详见回测结果摘要。") st.json({"nav_records": result.nav_series, "trades": result.trades}) except Exception as exc: # noqa: BLE001 LOGGER.exception("回测执行失败", extra=LOG_EXTRA) st.error(f"回测执行失败:{exc}") def render_settings() -> None: LOGGER.info("渲染设置页面", extra=LOG_EXTRA) st.header("数据与设置") cfg = get_config() LOGGER.debug("当前 TuShare Token 是否已配置=%s", bool(cfg.tushare_token), extra=LOG_EXTRA) token = st.text_input("TuShare Token", value=cfg.tushare_token or "", type="password") if st.button("保存设置"): LOGGER.info("保存设置按钮被点击", extra=LOG_EXTRA) cfg.tushare_token = token.strip() or None LOGGER.info("TuShare Token 更新,是否为空=%s", cfg.tushare_token is None, extra=LOG_EXTRA) save_config() st.success("设置已保存,仅在当前会话生效。") st.write("新闻源开关与数据库备份将在此配置。") st.divider() st.subheader("LLM 设置") llm_cfg = cfg.llm primary = llm_cfg.primary providers = sorted(DEFAULT_LLM_MODELS.keys()) try: provider_index = providers.index((primary.provider or "ollama").lower()) except ValueError: provider_index = 0 selected_provider = st.selectbox("LLM Provider", providers, index=provider_index) provider_info = DEFAULT_LLM_MODEL_OPTIONS.get(selected_provider, {}) model_options = provider_info.get("models", []) custom_model_label = "自定义模型" default_model_hint = DEFAULT_LLM_MODELS.get(selected_provider, DEFAULT_LLM_MODELS["ollama"]) if model_options: options_with_custom = model_options + [custom_model_label] if primary.provider == selected_provider and primary.model in model_options: model_index = options_with_custom.index(primary.model) else: model_index = 0 selected_model_option = st.selectbox( "LLM 模型", options_with_custom, index=model_index, help=f"可选模型:{', '.join(model_options)}", ) if selected_model_option == custom_model_label: custom_model_value = st.text_input( "自定义模型名称", value="" if primary.provider != selected_provider or primary.model in model_options else primary.model, ) chosen_model = custom_model_value.strip() or default_model_hint else: chosen_model = selected_model_option else: chosen_model = st.text_input( "LLM 模型", value=primary.model or default_model_hint, help="未预设该 Provider 的模型列表,请手动填写", ).strip() or default_model_hint default_base_hint = DEFAULT_LLM_BASE_URLS.get(selected_provider, "") provider_default_temp = float(provider_info.get("temperature", 0.2)) provider_default_timeout = int(provider_info.get("timeout", 30.0)) if primary.provider == selected_provider: base_value = primary.base_url or default_base_hint or "" temp_value = float(primary.temperature) timeout_value = int(primary.timeout) else: base_value = default_base_hint or "" temp_value = provider_default_temp timeout_value = provider_default_timeout llm_base = st.text_input( "LLM Base URL", value=base_value, help=f"默认推荐:{default_base_hint or '按供应商要求填写'}", ) llm_api_key = st.text_input( "LLM API Key", value=primary.api_key or "", type="password", help="点击右侧小图标可查看当前 Key,该值会写入 config.json(已被 gitignore 排除)", ) llm_temperature = st.slider( "LLM 温度", min_value=0.0, max_value=2.0, value=temp_value, step=0.05, ) llm_timeout = st.number_input( "请求超时时间 (秒)", min_value=5, max_value=120, value=timeout_value, step=5, ) strategy_options = ["single", "majority"] try: strategy_index = strategy_options.index(llm_cfg.strategy) except ValueError: strategy_index = 0 selected_strategy = st.selectbox("LLM 推理策略", strategy_options, index=strategy_index) majority_threshold = st.number_input( "多数投票门槛", min_value=1, max_value=10, value=int(llm_cfg.majority_threshold), step=1, format="%d", ) existing_api_keys = {ep.provider: ep.api_key or None for ep in llm_cfg.ensemble} ensemble_rows = [ { "provider": ep.provider, "model": ep.model, "base_url": ep.base_url or "", "api_key": ep.api_key or "", "temperature": float(ep.temperature), "timeout": float(ep.timeout), } for ep in llm_cfg.ensemble ] if not ensemble_rows: ensemble_rows = [ { "provider": "", "model": "", "base_url": "", "api_key": "", "temperature": provider_default_temp, "timeout": provider_default_timeout, } ] ensemble_rows = st.data_editor( ensemble_rows, num_rows="dynamic", key="llm_ensemble_editor", column_config={ "provider": st.column_config.SelectboxColumn( "Provider", options=sorted(DEFAULT_LLM_MODEL_OPTIONS.keys()), help="选择 LLM 供应商" ), "model": st.column_config.TextColumn("模型", help="留空时使用该 Provider 的默认模型"), "base_url": st.column_config.TextColumn("Base URL", help="留空时使用默认地址"), "api_key": st.column_config.TextColumn("API Key", help="留空表示使用环境变量或不配置"), "temperature": st.column_config.NumberColumn("温度", min_value=0.0, max_value=2.0, step=0.05), "timeout": st.column_config.NumberColumn("超时(秒)", min_value=5.0, max_value=120.0, step=5.0), }, hide_index=True, use_container_width=True, ) if hasattr(ensemble_rows, "to_dict"): ensemble_rows = ensemble_rows.to_dict("records") if st.button("保存 LLM 设置"): primary.provider = selected_provider primary.model = chosen_model primary.base_url = llm_base.strip() or DEFAULT_LLM_BASE_URLS.get(selected_provider) primary.temperature = llm_temperature primary.timeout = llm_timeout api_key_value = llm_api_key.strip() if api_key_value: primary.api_key = api_key_value new_ensemble: List[LLMEndpoint] = [] for row in ensemble_rows: provider = (row.get("provider") or "").strip().lower() if not provider: continue provider_defaults = DEFAULT_LLM_MODEL_OPTIONS.get(provider, {}) default_model = DEFAULT_LLM_MODELS.get(provider, DEFAULT_LLM_MODELS["ollama"]) default_base = DEFAULT_LLM_BASE_URLS.get(provider) temp_default = float(provider_defaults.get("temperature", 0.2)) timeout_default = float(provider_defaults.get("timeout", 30.0)) model_val = (row.get("model") or "").strip() or default_model base_val = (row.get("base_url") or "").strip() or default_base api_raw = (row.get("api_key") or "").strip() api_value = None if api_raw and api_raw != "***": api_value = api_raw else: existing = existing_api_keys.get(provider) if existing: api_value = existing temp_val = row.get("temperature") timeout_val = row.get("timeout") endpoint = LLMEndpoint( provider=provider, model=model_val, base_url=base_val, api_key=api_value, temperature=float(temp_val) if temp_val is not None else temp_default, timeout=float(timeout_val) if timeout_val is not None else timeout_default, ) new_ensemble.append(endpoint) llm_cfg.ensemble = new_ensemble llm_cfg.strategy = selected_strategy llm_cfg.majority_threshold = int(majority_threshold) save_config() LOGGER.info("LLM 配置已更新:%s", llm_config_snapshot(), extra=LOG_EXTRA) st.success("LLM 设置已保存,仅在当前会话生效。") st.json(llm_config_snapshot()) def render_tests() -> None: LOGGER.info("渲染自检页面", extra=LOG_EXTRA) st.header("自检测试") st.write("用于快速检查数据库与数据拉取是否正常工作。") if st.button("测试数据库初始化"): LOGGER.info("点击测试数据库初始化按钮", extra=LOG_EXTRA) with st.spinner("正在检查数据库..."): result = initialize_database() if result.skipped: LOGGER.info("数据库已存在,无需初始化", extra=LOG_EXTRA) st.success("数据库已存在,检查通过。") else: LOGGER.info("数据库初始化完成,执行语句数=%s", result.executed, extra=LOG_EXTRA) st.success(f"数据库初始化完成,共执行 {result.executed} 条语句。") st.divider() if st.button("测试 TuShare 拉取(示例 2024-01-01 至 2024-01-03)"): LOGGER.info("点击示例 TuShare 拉取按钮", extra=LOG_EXTRA) with st.spinner("正在调用 TuShare 接口..."): try: run_ingestion( FetchJob( name="streamlit_self_test", start=date(2024, 1, 1), end=date(2024, 1, 3), ts_codes=("000001.SZ",), ), include_limits=False, ) LOGGER.info("示例 TuShare 拉取成功", extra=LOG_EXTRA) st.success("TuShare 示例拉取完成,数据已写入数据库。") except Exception as exc: # noqa: BLE001 LOGGER.exception("示例 TuShare 拉取失败", extra=LOG_EXTRA) st.error(f"拉取失败:{exc}") st.info("注意:TuShare 拉取依赖网络与 Token,若环境未配置将出现错误提示。") st.divider() days = int(st.number_input("检查窗口(天数)", min_value=30, max_value=1095, value=365, step=30)) LOGGER.debug("检查窗口天数=%s", days, extra=LOG_EXTRA) cfg = get_config() force_refresh = st.checkbox( "强制刷新数据(关闭增量跳过)", value=cfg.force_refresh, help="勾选后将重新拉取所选区间全部数据", ) if force_refresh != cfg.force_refresh: cfg.force_refresh = force_refresh LOGGER.info("更新 force_refresh=%s", force_refresh, extra=LOG_EXTRA) save_config() if st.button("执行开机检查"): LOGGER.info("点击执行开机检查按钮", extra=LOG_EXTRA) progress_bar = st.progress(0.0) status_placeholder = st.empty() log_placeholder = st.empty() messages: list[str] = [] def hook(message: str, value: float) -> None: progress_bar.progress(min(max(value, 0.0), 1.0)) status_placeholder.write(message) messages.append(message) LOGGER.debug("开机检查进度:%s -> %.2f", message, value, extra=LOG_EXTRA) with st.spinner("正在执行开机检查..."): try: report = run_boot_check( days=days, progress_hook=hook, force_refresh=force_refresh, ) LOGGER.info("开机检查成功", extra=LOG_EXTRA) st.success("开机检查完成,以下为数据覆盖摘要。") st.json(report.to_dict()) if messages: log_placeholder.markdown("\n".join(f"- {msg}" for msg in messages)) except Exception as exc: # noqa: BLE001 LOGGER.exception("开机检查失败", extra=LOG_EXTRA) st.error(f"开机检查失败:{exc}") if messages: log_placeholder.markdown("\n".join(f"- {msg}" for msg in messages)) finally: progress_bar.progress(1.0) st.divider() st.subheader("股票行情可视化") options = _load_stock_options() default_code = options[0] if options else "000001.SZ" if options: selection = st.selectbox("选择股票", options, index=0) ts_code = _parse_ts_code(selection) LOGGER.debug("选择股票:%s", ts_code, extra=LOG_EXTRA) else: ts_code = st.text_input("输入股票代码(如 000001.SZ)", value=default_code).strip().upper() LOGGER.debug("输入股票:%s", ts_code, extra=LOG_EXTRA) viz_col1, viz_col2 = st.columns(2) default_start = date.today() - timedelta(days=180) start_date = viz_col1.date_input("开始日期", value=default_start, key="viz_start") end_date = viz_col2.date_input("结束日期", value=date.today(), key="viz_end") LOGGER.debug("行情可视化日期范围:%s-%s", start_date, end_date, extra=LOG_EXTRA) if start_date > end_date: LOGGER.warning("无效日期范围:%s>%s", start_date, end_date, extra=LOG_EXTRA) st.error("开始日期不能晚于结束日期") return with st.spinner("正在加载行情数据..."): try: df = _load_daily_frame(ts_code, start_date, end_date) except Exception as exc: # noqa: BLE001 LOGGER.exception("加载行情数据失败", extra=LOG_EXTRA) st.error(f"读取数据失败:{exc}") return if df.empty: LOGGER.warning("指定区间无行情数据:%s %s-%s", ts_code, start_date, end_date, extra=LOG_EXTRA) st.warning("未查询到该区间的交易数据,请确认数据库已拉取对应日线。") return price_df = df[["close"]].rename(columns={"close": "收盘价"}) volume_df = df[["vol"]].rename(columns={"vol": "成交量(手)"}) if price_df.shape[0] > 180: sampled = price_df.resample('3D').last().dropna() else: sampled = price_df if volume_df.shape[0] > 180: volume_sampled = volume_df.resample('3D').mean().dropna() else: volume_sampled = volume_df first_close = sampled.iloc[0, 0] last_close = sampled.iloc[-1, 0] delta_abs = last_close - first_close delta_pct = (delta_abs / first_close * 100) if first_close else 0.0 metric_col1, metric_col2, metric_col3 = st.columns(3) metric_col1.metric("最新收盘价", f"{last_close:.2f}", delta=f"{delta_abs:+.2f}") metric_col2.metric("区间涨跌幅", f"{delta_pct:+.2f}%") metric_col3.metric("平均成交量", f"{volume_sampled['成交量(手)'].mean():.0f}") df_reset = df.reset_index().rename(columns={ "trade_date": "交易日", "open": "开盘价", "high": "最高价", "low": "最低价", "close": "收盘价", "vol": "成交量(手)", "amount": "成交额(千元)", }) df_reset["成交额(千元)"] = df_reset["成交额(千元)"] / 1000 candle_fig = go.Figure( data=[ go.Candlestick( x=df_reset["交易日"], open=df_reset["开盘价"], high=df_reset["最高价"], low=df_reset["最低价"], close=df_reset["收盘价"], name="K线", ) ] ) candle_fig.update_layout(height=420, margin=dict(l=10, r=10, t=40, b=10)) st.plotly_chart(candle_fig, use_container_width=True) vol_fig = px.bar( df_reset, x="交易日", y="成交量(手)", labels={"成交量(手)": "成交量(手)"}, title="成交量", ) vol_fig.update_layout(height=280, margin=dict(l=10, r=10, t=40, b=10)) st.plotly_chart(vol_fig, use_container_width=True) amt_fig = px.bar( df_reset, x="交易日", y="成交额(千元)", labels={"成交额(千元)": "成交额(千元)"}, title="成交额", ) amt_fig.update_layout(height=280, margin=dict(l=10, r=10, t=40, b=10)) st.plotly_chart(amt_fig, use_container_width=True) df_reset["月份"] = df_reset["交易日"].dt.to_period("M").astype(str) box_fig = px.box( df_reset, x="月份", y="收盘价", points="outliers", title="月度收盘价分布", ) box_fig.update_layout(height=320, margin=dict(l=10, r=10, t=40, b=10)) st.plotly_chart(box_fig, use_container_width=True) st.caption("提示:成交量单位为手,成交额以千元显示。箱线图按月展示收盘价分布。") st.dataframe(df_reset.tail(20), width='stretch') LOGGER.info("行情可视化完成,展示行数=%s", len(df_reset), extra=LOG_EXTRA) st.divider() st.subheader("LLM 接口测试") st.json(llm_config_snapshot()) llm_prompt = st.text_area("测试 Prompt", value="请概述今天的市场重点。", height=160) system_prompt = st.text_area( "System Prompt (可选)", value="你是一名量化策略研究助手,用简洁中文回答。", height=100, ) if st.button("执行 LLM 测试"): with st.spinner("正在调用 LLM..."): try: response = run_llm(llm_prompt, system=system_prompt or None) except Exception as exc: # noqa: BLE001 LOGGER.exception("LLM 测试失败", extra=LOG_EXTRA) st.error(f"LLM 调用失败:{exc}") else: LOGGER.info("LLM 测试成功", extra=LOG_EXTRA) st.success("LLM 调用成功,以下为返回内容:") st.write(response) def main() -> None: LOGGER.info("初始化 Streamlit UI", extra=LOG_EXTRA) st.set_page_config(page_title="多智能体投资助理", layout="wide") tabs = st.tabs(["今日计划", "回测与复盘", "数据与设置", "自检测试"]) LOGGER.debug("Tabs 初始化完成:%s", ["今日计划", "回测与复盘", "数据与设置", "自检测试"], extra=LOG_EXTRA) with tabs[0]: render_today_plan() with tabs[1]: render_backtest() with tabs[2]: render_settings() with tabs[3]: render_tests() if __name__ == "__main__": main()