"""Backtest engine skeleton for daily bar simulation.""" from __future__ import annotations import json from dataclasses import dataclass, field from datetime import date from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional from app.agents.base import AgentAction, AgentContext from app.agents.departments import DepartmentManager from app.agents.game import Decision, decide from app.llm.metrics import record_decision as metrics_record_decision from app.agents.registry import default_agents from app.data.schema import initialize_database from app.utils.data_access import DataBroker from app.utils.config import get_config from app.utils.db import db_session from app.utils.logging import get_logger from app.core.indicators import momentum, normalize, rolling_mean, volatility LOGGER = get_logger(__name__) LOG_EXTRA = {"stage": "backtest"} @dataclass class BtConfig: id: str name: str start_date: date end_date: date universe: List[str] params: Dict[str, float] method: str = "nash" @dataclass class PortfolioState: cash: float = 1_000_000.0 holdings: Dict[str, float] = field(default_factory=dict) cost_basis: Dict[str, float] = field(default_factory=dict) opened_dates: Dict[str, str] = field(default_factory=dict) realized_pnl: float = 0.0 @dataclass class BacktestResult: nav_series: List[Dict[str, float]] = field(default_factory=list) trades: List[Dict[str, str]] = field(default_factory=list) risk_events: List[Dict[str, object]] = field(default_factory=list) class BacktestEngine: """Runs the multi-agent game inside a daily event-driven loop.""" def __init__(self, cfg: BtConfig) -> None: self.cfg = cfg self.agents = default_agents() app_cfg = get_config() weight_config = app_cfg.agent_weights.as_dict() if app_cfg.agent_weights else {} if weight_config: self.weights = weight_config else: self.weights = {agent.name: 1.0 for agent in self.agents} initialize_database() self.department_manager = ( DepartmentManager(app_cfg) if app_cfg.departments else None ) self.data_broker = DataBroker() params = cfg.params or {} self.risk_params = { "max_position_weight": float(params.get("max_position_weight", 0.2)), "max_daily_turnover_ratio": float(params.get("max_daily_turnover_ratio", 0.25)), "fee_rate": float(params.get("fee_rate", 0.0005)), "slippage_bps": float(params.get("slippage_bps", 10.0)), } self._fee_rate = max(self.risk_params["fee_rate"], 0.0) self._slippage_rate = max(self.risk_params["slippage_bps"], 0.0) / 10_000.0 self._turnover_cap = max(self.risk_params["max_daily_turnover_ratio"], 0.0) self._buy_actions = { AgentAction.BUY_S, AgentAction.BUY_M, AgentAction.BUY_L, } self._sell_actions = {AgentAction.SELL} department_scope: set[str] = set() for settings in app_cfg.departments.values(): department_scope.update(settings.data_scope) base_scope = { "daily.close", "daily.open", "daily.high", "daily.low", "daily.pct_chg", "daily.vol", "daily.amount", "daily_basic.turnover_rate", "daily_basic.turnover_rate_f", "daily_basic.volume_ratio", "stk_limit.up_limit", "stk_limit.down_limit", "factors.mom_20", "factors.mom_60", "factors.volat_20", "factors.turn_20", } self.required_fields = sorted(base_scope | department_scope) def load_market_data(self, trade_date: date) -> Mapping[str, Dict[str, Any]]: """Load per-stock feature vectors and context slices for the trade date.""" trade_date_str = trade_date.strftime("%Y%m%d") feature_map: Dict[str, Dict[str, Any]] = {} universe = self.cfg.universe or [] for ts_code in universe: scope_values = self.data_broker.fetch_latest( ts_code, trade_date_str, self.required_fields, ) closes = self.data_broker.fetch_series( "daily", "close", ts_code, trade_date_str, window=60, ) close_values = [value for _date, value in closes if value is not None] mom20 = scope_values.get("factors.mom_20") if mom20 is None and len(close_values) >= 20: mom20 = momentum(close_values, 20) mom60 = scope_values.get("factors.mom_60") if mom60 is None and len(close_values) >= 60: mom60 = momentum(close_values, 60) volat20 = scope_values.get("factors.volat_20") if volat20 is None and len(close_values) >= 2: volat20 = volatility(close_values, 20) turnover_series = self.data_broker.fetch_series( "daily_basic", "turnover_rate", ts_code, trade_date_str, window=20, ) turnover_values = [value for _date, value in turnover_series if value is not None] turn20 = scope_values.get("factors.turn_20") if turn20 is None and turnover_values: turn20 = rolling_mean(turnover_values, 20) if mom20 is None: mom20 = 0.0 if mom60 is None: mom60 = 0.0 if volat20 is None: volat20 = 0.0 if turn20 is None: turn20 = 0.0 liquidity_score = normalize(turn20, factor=20.0) cost_penalty = normalize( scope_values.get("daily_basic.volume_ratio", 0.0), factor=50.0, ) sentiment_index = scope_values.get("news.sentiment_index", 0.0) heat_score = scope_values.get("news.heat_score", 0.0) scope_values.setdefault("news.sentiment_index", sentiment_index) scope_values.setdefault("news.heat_score", heat_score) scope_values.setdefault("factors.mom_20", mom20) scope_values.setdefault("factors.mom_60", mom60) scope_values.setdefault("factors.volat_20", volat20) scope_values.setdefault("factors.turn_20", turn20) if scope_values.get("macro.industry_heat") is None: scope_values["macro.industry_heat"] = 0.5 if scope_values.get("macro.relative_strength") is None: peer_strength = scope_values.get("index.performance_peers") if peer_strength is None: peer_strength = 0.5 scope_values["macro.relative_strength"] = peer_strength scope_values.setdefault( "index.performance_peers", scope_values.get("macro.relative_strength", 0.5), ) latest_close = scope_values.get("daily.close", 0.0) latest_pct = scope_values.get("daily.pct_chg", 0.0) latest_turnover = scope_values.get("daily_basic.turnover_rate", 0.0) up_limit = scope_values.get("stk_limit.up_limit") limit_up = False if up_limit and latest_close: limit_up = latest_close >= up_limit * 0.999 down_limit = scope_values.get("stk_limit.down_limit") limit_down = False if down_limit and latest_close: limit_down = latest_close <= down_limit * 1.001 is_suspended = self.data_broker.fetch_flags( "suspend", ts_code, trade_date_str, "suspend_date <= ? AND (resume_date IS NULL OR resume_date > ?)", (trade_date_str, trade_date_str), ) features = { "mom_20": mom20, "mom_60": mom60, "volat_20": volat20, "turn_20": turn20, "liquidity_score": liquidity_score, "cost_penalty": cost_penalty, "news_heat": heat_score, "news_sentiment": sentiment_index, "industry_heat": scope_values.get("macro.industry_heat", 0.0), "industry_relative_mom": scope_values.get( "macro.relative_strength", scope_values.get("index.performance_peers", 0.0), ), "risk_penalty": min(1.0, volat20 * 5.0), "is_suspended": is_suspended, "limit_up": limit_up, "limit_down": limit_down, "position_limit": False, } market_snapshot = { "close": latest_close, "pct_chg": latest_pct, "turnover_rate": latest_turnover, "volume": scope_values.get("daily.vol", 0.0), "amount": scope_values.get("daily.amount", 0.0), "up_limit": up_limit, "down_limit": down_limit, } raw_payload = { "scope_values": scope_values, "close_series": closes, "turnover_series": turnover_series, "required_fields": self.required_fields, } feature_map[ts_code] = { "features": features, "market_snapshot": market_snapshot, "raw": raw_payload, } return feature_map def simulate_day( self, trade_date: date, state: PortfolioState, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> List[tuple[str, AgentContext, Decision]]: feature_map = self.load_market_data(trade_date) records: List[tuple[str, AgentContext, Decision]] = [] for ts_code, payload in feature_map.items(): features = payload.get("features", {}) market_snapshot = payload.get("market_snapshot", {}) raw = payload.get("raw", {}) context = AgentContext( ts_code=ts_code, trade_date=trade_date.isoformat(), features=features, market_snapshot=market_snapshot, raw=raw, ) decision = decide( context, self.agents, self.weights, method=self.cfg.method, department_manager=self.department_manager, ) try: metrics_record_decision( ts_code=ts_code, trade_date=context.trade_date, action=decision.action.value, confidence=decision.confidence, summary=_extract_summary(decision), source="backtest", departments={ code: dept.to_dict() for code, dept in decision.department_decisions.items() }, ) except Exception: # noqa: BLE001 LOGGER.debug("记录决策指标失败", extra=LOG_EXTRA) records.append((ts_code, context, decision)) self.record_agent_state(context, decision) if decision_callback: try: decision_callback(ts_code, trade_date, context, decision) except Exception: # noqa: BLE001 LOGGER.exception("决策回调执行失败", extra=LOG_EXTRA) return records def record_agent_state(self, context: AgentContext, decision: Decision) -> None: payload = { "trade_date": context.trade_date, "ts_code": context.ts_code, "action": decision.action.value, "confidence": decision.confidence, "department_votes": decision.department_votes, "requires_review": decision.requires_review, "departments": { code: dept.to_dict() for code, dept in decision.department_decisions.items() }, } combined_weights = dict(self.weights) if self.department_manager: for code, agent in self.department_manager.agents.items(): key = f"dept_{code}" combined_weights[key] = agent.settings.weight feasible_json = json.dumps( [action.value for action in decision.feasible_actions], ensure_ascii=False, ) rows = [] for agent_name, weight in combined_weights.items(): action_scores = { action.value: float(decision.utilities.get(action, {}).get(agent_name, 0.0)) for action in decision.utilities.keys() } best_action = decision.action.value if action_scores: best_action = max(action_scores.items(), key=lambda item: item[1])[0] metadata: Dict[str, object] = {} if agent_name.startswith("dept_"): dept_code = agent_name.split("dept_", 1)[-1] dept_decision = decision.department_decisions.get(dept_code) if dept_decision: metadata = { "_summary": dept_decision.summary, "_signals": dept_decision.signals, "_risks": dept_decision.risks, "_confidence": dept_decision.confidence, } if dept_decision.supplements: metadata["_supplements"] = dept_decision.supplements if dept_decision.dialogue: metadata["_dialogue"] = dept_decision.dialogue if dept_decision.telemetry: metadata["_telemetry"] = dept_decision.telemetry payload_json = {**action_scores, **metadata} rows.append( ( context.trade_date, context.ts_code, agent_name, best_action, json.dumps(payload_json, ensure_ascii=False), feasible_json, float(weight), ) ) global_payload = { "_confidence": decision.confidence, "_target_weight": decision.target_weight, "_department_votes": decision.department_votes, "_requires_review": decision.requires_review, "_scope_values": context.raw.get("scope_values", {}), "_close_series": context.raw.get("close_series", []), "_turnover_series": context.raw.get("turnover_series", []), "_department_supplements": { code: dept.supplements for code, dept in decision.department_decisions.items() if dept.supplements }, "_department_dialogue": { code: dept.dialogue for code, dept in decision.department_decisions.items() if dept.dialogue }, "_department_telemetry": { code: dept.telemetry for code, dept in decision.department_decisions.items() if dept.telemetry }, } rows.append( ( context.trade_date, context.ts_code, "global", decision.action.value, json.dumps(global_payload, ensure_ascii=False), feasible_json, 1.0, ) ) try: with db_session() as conn: conn.executemany( """ INSERT OR REPLACE INTO agent_utils (trade_date, ts_code, agent, action, utils, feasible, weight) VALUES (?, ?, ?, ?, ?, ?, ?) """, rows, ) except Exception: LOGGER.exception("写入 agent_utils 失败", extra=LOG_EXTRA) _ = payload # TODO: persist payload into bt_trades / audit tables when schema is ready. try: self._record_investment_candidate(context, decision) except Exception: # noqa: BLE001 LOGGER.exception("写入 investment_pool 失败", extra=LOG_EXTRA) def _apply_portfolio_updates( self, trade_date: date, state: PortfolioState, records: List[tuple[str, AgentContext, Decision]], result: BacktestResult, ) -> None: trade_date_str = trade_date.isoformat() price_map: Dict[str, float] = {} decisions_map: Dict[str, Decision] = {} feature_cache: Dict[str, Mapping[str, Any]] = {} for ts_code, context, decision in records: features = context.features or {} if not isinstance(features, Mapping): features = {} feature_cache[ts_code] = features scope_values = context.raw.get("scope_values") if context.raw else {} if not isinstance(scope_values, Mapping): scope_values = {} price = scope_values.get("daily.close") or scope_values.get("close") if price is None: continue try: price = float(price) except (TypeError, ValueError): continue price_map[ts_code] = price decisions_map[ts_code] = decision if not price_map and state.holdings: trade_date_compact = trade_date.strftime("%Y%m%d") for ts_code in list(state.holdings.keys()): fetched = self.data_broker.fetch_latest(ts_code, trade_date_compact, ["daily.close"]) price = fetched.get("daily.close") if price: price_map[ts_code] = float(price) portfolio_value_before = state.cash for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) if price is None: continue portfolio_value_before += qty * price if portfolio_value_before <= 0: portfolio_value_before = state.cash or 1.0 daily_turnover = 0.0 executed_trades: List[Dict[str, Any]] = [] risk_events: List[Dict[str, Any]] = [] def _record_risk(ts_code: str, reason: str, decision: Decision, extra: Optional[Dict[str, Any]] = None) -> None: payload = { "trade_date": trade_date_str, "ts_code": ts_code, "action": decision.action.value, "target_weight": decision.target_weight, "confidence": decision.confidence, "reason": reason, } if extra: payload.update(extra) risk_events.append(payload) for ts_code, decision in decisions_map.items(): price = price_map.get(ts_code) if price is None or price <= 0: continue features = feature_cache.get(ts_code, {}) current_qty = state.holdings.get(ts_code, 0.0) liquidity_score = float(features.get("liquidity_score") or 0.0) risk_penalty = float(features.get("risk_penalty") or 0.0) is_suspended = bool(features.get("is_suspended")) limit_up = bool(features.get("limit_up")) limit_down = bool(features.get("limit_down")) position_limit = bool(features.get("position_limit")) if is_suspended: _record_risk(ts_code, "suspended", decision) continue if decision.action in self._buy_actions: if limit_up: _record_risk(ts_code, "limit_up", decision) continue if position_limit: _record_risk(ts_code, "position_limit", decision) continue if risk_penalty >= 0.95: _record_risk(ts_code, "risk_penalty", decision, {"risk_penalty": risk_penalty}) continue if decision.action in self._sell_actions and limit_down: _record_risk(ts_code, "limit_down", decision) continue effective_weight = max(decision.target_weight, 0.0) if decision.action in self._buy_actions: capped_weight = min(effective_weight, self.risk_params["max_position_weight"]) effective_weight = capped_weight * max(0.0, 1.0 - risk_penalty) elif decision.action in self._sell_actions: effective_weight = 0.0 desired_qty = current_qty if decision.action in self._sell_actions: desired_qty = 0.0 elif decision.action in self._buy_actions or effective_weight >= 0.0: desired_value = max(effective_weight, 0.0) * portfolio_value_before desired_qty = desired_value / price if price > 0 else current_qty delta = desired_qty - current_qty if abs(delta) < 1e-6: continue if delta > 0 and self._turnover_cap > 0: liquidity_scalar = max(liquidity_score, 0.1) max_trade_value = self._turnover_cap * portfolio_value_before * liquidity_scalar if max_trade_value > 0 and delta * price > max_trade_value: delta = max_trade_value / price desired_qty = current_qty + delta if delta > 0: trade_price = price * (1.0 + self._slippage_rate) per_share_cost = trade_price * (1.0 + self._fee_rate) if per_share_cost <= 0: _record_risk(ts_code, "invalid_price", decision) continue max_affordable = state.cash / per_share_cost if per_share_cost > 0 else 0.0 if delta > max_affordable: if max_affordable <= 1e-6: _record_risk(ts_code, "insufficient_cash", decision) continue delta = max_affordable desired_qty = current_qty + delta trade_value = delta * trade_price fee = trade_value * self._fee_rate total_cash_needed = trade_value + fee if total_cash_needed <= 0: _record_risk(ts_code, "invalid_trade", decision) continue previous_cost = state.cost_basis.get(ts_code, 0.0) * current_qty new_qty = current_qty + delta state.cost_basis[ts_code] = ( (previous_cost + trade_value + fee) / new_qty if new_qty > 0 else 0.0 ) state.cash -= total_cash_needed state.holdings[ts_code] = new_qty state.opened_dates.setdefault(ts_code, trade_date_str) daily_turnover += trade_value executed_trades.append( { "trade_date": trade_date_str, "ts_code": ts_code, "action": "buy", "quantity": float(delta), "price": trade_price, "base_price": price, "value": trade_value, "fee": fee, "slippage": trade_price - price, "confidence": decision.confidence, "target_weight": decision.target_weight, "effective_weight": effective_weight, "risk_penalty": risk_penalty, "liquidity_score": liquidity_score, "status": "executed", } ) else: sell_qty = min(abs(delta), current_qty) if sell_qty <= 1e-6: continue trade_price = price * (1.0 - self._slippage_rate) trade_price = max(trade_price, 0.0) gross_value = sell_qty * trade_price fee = gross_value * self._fee_rate proceeds = gross_value - fee cost_basis = state.cost_basis.get(ts_code, 0.0) realized = (trade_price - cost_basis) * sell_qty - fee state.cash += proceeds state.realized_pnl += realized new_qty = current_qty - sell_qty if new_qty <= 1e-6: state.holdings.pop(ts_code, None) state.cost_basis.pop(ts_code, None) state.opened_dates.pop(ts_code, None) else: state.holdings[ts_code] = new_qty daily_turnover += gross_value executed_trades.append( { "trade_date": trade_date_str, "ts_code": ts_code, "action": "sell", "quantity": float(sell_qty), "price": trade_price, "base_price": price, "value": gross_value, "fee": fee, "slippage": price - trade_price, "confidence": decision.confidence, "target_weight": decision.target_weight, "effective_weight": effective_weight, "risk_penalty": risk_penalty, "liquidity_score": liquidity_score, "realized_pnl": realized, "status": "executed", } ) market_value = 0.0 unrealized_pnl = 0.0 for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) if price is None: continue market_value += qty * price cost_basis = state.cost_basis.get(ts_code, 0.0) unrealized_pnl += (price - cost_basis) * qty nav = state.cash + market_value result.nav_series.append( { "trade_date": trade_date_str, "nav": nav, "cash": state.cash, "market_value": market_value, "realized_pnl": state.realized_pnl, "unrealized_pnl": unrealized_pnl, "turnover": daily_turnover, } ) if executed_trades: result.trades.extend(executed_trades) if risk_events: result.risk_events.extend(risk_events) try: self._persist_portfolio( trade_date_str, state, market_value, unrealized_pnl, executed_trades, price_map, decisions_map, daily_turnover, ) except Exception: # noqa: BLE001 LOGGER.exception("持仓数据写入失败", extra=LOG_EXTRA) def _record_investment_candidate( self, context: AgentContext, decision: Decision ) -> None: status = _candidate_status(decision.action, decision.requires_review) summary = _extract_summary(decision) if not summary: collected_signals: List[str] = [] for dept in decision.department_decisions.values(): collected_signals.extend(dept.signals) summary = ";".join(str(sig) for sig in collected_signals[:3]) metadata = { "target_weight": decision.target_weight, "feasible_actions": [action.value for action in decision.feasible_actions], "department_votes": decision.department_votes, "requires_review": decision.requires_review, "confidence": decision.confidence, } if decision.department_decisions: metadata["departments"] = { code: dept.to_dict() for code, dept in decision.department_decisions.items() } with db_session() as conn: conn.execute( """ INSERT OR REPLACE INTO investment_pool (trade_date, ts_code, score, status, rationale, tags, metadata) VALUES (?, ?, ?, ?, ?, ?, ?) """, ( context.trade_date, context.ts_code, float(decision.confidence or 0.0), status, summary or None, json.dumps(_department_tags(decision), ensure_ascii=False), json.dumps(metadata, ensure_ascii=False), ), ) def _persist_portfolio( self, trade_date: str, state: PortfolioState, market_value: float, unrealized_pnl: float, trades: List[Dict[str, Any]], price_map: Dict[str, float], decisions_map: Dict[str, Decision], daily_turnover: float, ) -> None: holdings_rows: List[tuple] = [] for ts_code, qty in state.holdings.items(): price = price_map.get(ts_code) market_val = qty * price if price is not None else None cost_basis = state.cost_basis.get(ts_code, 0.0) unrealized = (price - cost_basis) * qty if price is not None else None decision = decisions_map.get(ts_code) target_weight = decision.target_weight if decision else None metadata = { "last_action": decision.action.value if decision else None, "confidence": decision.confidence if decision else None, } holdings_rows.append( ( ts_code, state.opened_dates.get(ts_code, trade_date), None, qty, cost_basis, price, market_val, state.realized_pnl, unrealized, target_weight, "open", None, json.dumps(metadata, ensure_ascii=False), ) ) snapshot_metadata = { "holdings": len(state.holdings), "turnover_value": daily_turnover, } with db_session() as conn: conn.execute( """ INSERT OR REPLACE INTO portfolio_snapshots (trade_date, total_value, cash, invested_value, unrealized_pnl, realized_pnl, net_flow, exposure, notes, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( trade_date, market_value + state.cash, state.cash, market_value, unrealized_pnl, state.realized_pnl, None, None, None, json.dumps(snapshot_metadata, ensure_ascii=False), ), ) conn.execute("DELETE FROM portfolio_positions") if holdings_rows: conn.executemany( """ INSERT INTO portfolio_positions (ts_code, opened_date, closed_date, quantity, cost_price, market_price, market_value, realized_pnl, unrealized_pnl, target_weight, status, notes, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, holdings_rows, ) if trades: conn.executemany( """ INSERT INTO portfolio_trades (trade_date, ts_code, action, quantity, price, fee, order_id, source, notes, metadata) VALUES (?, ?, ?, ?, ?, ?, NULL, 'backtest', NULL, ?) """, [ ( trade["trade_date"], trade["ts_code"], trade["action"], trade["quantity"], trade["price"], trade.get("fee", 0.0), json.dumps(trade, ensure_ascii=False), ) for trade in trades ], ) def run( self, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: state = PortfolioState() result = BacktestResult() current = self.cfg.start_date while current <= self.cfg.end_date: records = self.simulate_day(current, state, decision_callback) self._apply_portfolio_updates(current, state, records, result) current = date.fromordinal(current.toordinal() + 1) return result def run_backtest( cfg: BtConfig, *, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: engine = BacktestEngine(cfg) result = engine.run(decision_callback=decision_callback) _persist_backtest_results(cfg, result) return result def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None: """Persist backtest configuration, NAV path, trades and summary metrics.""" nav_rows: List[tuple] = [] trade_rows: List[tuple] = [] risk_rows: List[tuple] = [] summary_payload: Dict[str, object] = {} turnover_sum = 0.0 if result.nav_series: first_nav = float(result.nav_series[0].get("nav", 0.0) or 0.0) peak_nav = first_nav prev_nav: Optional[float] = None max_drawdown = 0.0 for entry in result.nav_series: trade_date = str(entry.get("trade_date", "")) nav_val = float(entry.get("nav", 0.0) or 0.0) cash = float(entry.get("cash", 0.0) or 0.0) market_value = float(entry.get("market_value", 0.0) or 0.0) realized = float(entry.get("realized_pnl", 0.0) or 0.0) unrealized = float(entry.get("unrealized_pnl", 0.0) or 0.0) turnover = float(entry.get("turnover", 0.0) or 0.0) if nav_val > peak_nav: peak_nav = nav_val drawdown = (peak_nav - nav_val) / peak_nav if peak_nav else 0.0 max_drawdown = max(max_drawdown, drawdown) if prev_nav is None or prev_nav == 0.0: ret_val = 0.0 else: ret_val = (nav_val / prev_nav) - 1.0 prev_nav = nav_val info_payload = { "cash": cash, "market_value": market_value, "realized_pnl": realized, "unrealized_pnl": unrealized, "turnover": turnover, } turnover_sum += turnover nav_rows.append( ( cfg.id, trade_date, nav_val, float(ret_val), None, None, float(drawdown), json.dumps(info_payload, ensure_ascii=False), ) ) last_nav = float(result.nav_series[-1].get("nav", 0.0) or 0.0) total_return = (last_nav / first_nav - 1.0) if first_nav else 0.0 summary_payload.update( { "start_nav": first_nav, "end_nav": last_nav, "total_return": total_return, "max_drawdown": max_drawdown, "days": len(result.nav_series), } ) if turnover_sum: summary_payload["total_turnover"] = turnover_sum summary_payload["avg_turnover"] = turnover_sum / max(len(result.nav_series), 1) if result.trades: for trade in result.trades: trade_date = str(trade.get("trade_date", "")) ts_code = str(trade.get("ts_code", "")) side = str(trade.get("action", "")).lower() price = float(trade.get("price", 0.0) or 0.0) qty = float(trade.get("quantity", 0.0) or 0.0) reason_payload = { "confidence": trade.get("confidence"), "target_weight": trade.get("target_weight"), "value": trade.get("value"), "fee": trade.get("fee"), "slippage": trade.get("slippage"), "risk_penalty": trade.get("risk_penalty"), "liquidity_score": trade.get("liquidity_score"), } trade_rows.append( ( cfg.id, ts_code, trade_date, side, price, qty, json.dumps(reason_payload, ensure_ascii=False), ) ) summary_payload["trade_count"] = len(trade_rows) if result.risk_events: summary_payload["risk_events"] = len(result.risk_events) breakdown: Dict[str, int] = {} for event in result.risk_events: reason = str(event.get("reason") or "unknown") breakdown[reason] = breakdown.get(reason, 0) + 1 risk_rows.append( ( cfg.id, str(event.get("trade_date", "")), str(event.get("ts_code", "")), reason, str(event.get("action", "")), float(event.get("target_weight", 0.0) or 0.0), float(event.get("confidence", 0.0) or 0.0), json.dumps(event, ensure_ascii=False), ) ) summary_payload["risk_breakdown"] = breakdown cfg_payload = { "id": cfg.id, "name": cfg.name, "start_date": cfg.start_date.isoformat(), "end_date": cfg.end_date.isoformat(), "universe": cfg.universe, "params": cfg.params, "method": cfg.method, } with db_session() as conn: conn.execute( """ INSERT OR REPLACE INTO bt_config (id, name, start_date, end_date, universe, params) VALUES (?, ?, ?, ?, ?, ?) """, ( cfg.id, cfg.name, cfg.start_date.isoformat(), cfg.end_date.isoformat(), ",".join(cfg.universe), json.dumps(cfg.params, ensure_ascii=False), ), ) conn.execute("DELETE FROM bt_nav WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_trades WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_risk_events WHERE cfg_id = ?", (cfg.id,)) conn.execute("DELETE FROM bt_report WHERE cfg_id = ?", (cfg.id,)) if nav_rows: conn.executemany( """ INSERT INTO bt_nav (cfg_id, trade_date, nav, ret, pos_count, turnover, dd, info) VALUES (?, ?, ?, ?, ?, ?, ?, ?) """, nav_rows, ) if trade_rows: conn.executemany( """ INSERT INTO bt_trades (cfg_id, ts_code, trade_date, side, price, qty, reason) VALUES (?, ?, ?, ?, ?, ?, ?) """, trade_rows, ) if risk_rows: conn.executemany( """ INSERT INTO bt_risk_events (cfg_id, trade_date, ts_code, reason, action, target_weight, confidence, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?) """, risk_rows, ) summary_payload.setdefault("universe", cfg.universe) summary_payload.setdefault("method", cfg.method) conn.execute( """ INSERT OR REPLACE INTO bt_report (cfg_id, summary) VALUES (?, ?) """, (cfg.id, json.dumps(summary_payload, ensure_ascii=False, default=str)), ) def _candidate_status(action: AgentAction, requires_review: bool) -> str: mapping = { AgentAction.SELL: "exit", AgentAction.HOLD: "watch", AgentAction.BUY_S: "buy_s", AgentAction.BUY_M: "buy_m", AgentAction.BUY_L: "buy_l", } base = mapping.get(action, "candidate") if requires_review: return f"{base}_review" return base def _extract_summary(decision: Decision) -> str: for dept_decision in decision.department_decisions.values(): summary = getattr(dept_decision, "summary", "") if summary: return str(summary) return "" def _department_tags(decision: Decision) -> List[str]: tags: List[str] = [] for code, dept in decision.department_decisions.items(): action = getattr(dept, "action", None) if action is None: continue tags.append(f"{code}:{action.value}") return sorted(set(tags))