"""TuShare 数据拉取与数据覆盖检查工具。""" from __future__ import annotations import os import time from collections import deque from dataclasses import dataclass from datetime import date from typing import Callable, Dict, Iterable, List, Optional, Sequence, Tuple import pandas as pd try: import tushare as ts except ImportError: # pragma: no cover - 运行时提示 ts = None # type: ignore[assignment] from app.utils.config import get_config from app.utils.db import db_session from app.data.schema import initialize_database from app.utils.logging import get_logger LOGGER = get_logger(__name__) API_DEFAULT_LIMIT = 5000 LOG_EXTRA = {"stage": "data_ingest"} _CALL_QUEUE = deque() def _respect_rate_limit(cfg) -> None: max_calls = cfg.max_calls_per_minute if max_calls <= 0: return now = time.time() window = 60.0 while _CALL_QUEUE and now - _CALL_QUEUE[0] > window: _CALL_QUEUE.popleft() if len(_CALL_QUEUE) >= max_calls: sleep_time = window - (now - _CALL_QUEUE[0]) + 0.1 LOGGER.debug("触发限频控制,休眠 %.2f 秒", sleep_time, extra=LOG_EXTRA) time.sleep(max(0.1, sleep_time)) _CALL_QUEUE.append(time.time()) def _existing_date_range( table: str, date_col: str, ts_code: str | None = None, ) -> Tuple[str | None, str | None]: query = f"SELECT MIN({date_col}) AS min_d, MAX({date_col}) AS max_d FROM {table}" params: Tuple = () if ts_code: query += " WHERE ts_code = ?" params = (ts_code,) with db_session(read_only=True) as conn: row = conn.execute(query, params).fetchone() if row is None: return None, None return row["min_d"], row["max_d"] def _df_to_records(df: pd.DataFrame, allowed_cols: List[str]) -> List[Dict]: if df is None or df.empty: return [] reindexed = df.reindex(columns=allowed_cols) return reindexed.where(pd.notnull(reindexed), None).to_dict("records") def _fetch_paginated(endpoint: str, params: Dict[str, object], limit: int | None = None) -> pd.DataFrame: client = _ensure_client() limit = limit or API_DEFAULT_LIMIT frames: List[pd.DataFrame] = [] offset = 0 clean_params = {k: v for k, v in params.items() if v is not None} LOGGER.info( "开始调用 TuShare 接口:%s,参数=%s,limit=%s", endpoint, clean_params, limit, extra=LOG_EXTRA, ) while True: _respect_rate_limit(get_config()) call = getattr(client, endpoint) try: df = call(limit=limit, offset=offset, **clean_params) except Exception: # noqa: BLE001 LOGGER.exception( "TuShare 接口调用异常:endpoint=%s offset=%s params=%s", endpoint, offset, clean_params, extra=LOG_EXTRA, ) raise if df is None or df.empty: LOGGER.debug( "TuShare 返回空数据:endpoint=%s offset=%s", endpoint, offset, extra=LOG_EXTRA, ) break LOGGER.debug( "TuShare 返回 %s 行:endpoint=%s offset=%s", len(df), endpoint, offset, extra=LOG_EXTRA, ) frames.append(df) if len(df) < limit: break offset += limit if not frames: return pd.DataFrame() merged = pd.concat(frames, ignore_index=True) LOGGER.info( "TuShare 调用完成:endpoint=%s 总行数=%s", endpoint, len(merged), extra=LOG_EXTRA, ) return merged @dataclass class FetchJob: name: str start: date end: date granularity: str = "daily" ts_codes: Optional[Sequence[str]] = None _TABLE_SCHEMAS: Dict[str, str] = { "stock_basic": """ CREATE TABLE IF NOT EXISTS stock_basic ( ts_code TEXT PRIMARY KEY, symbol TEXT, name TEXT, area TEXT, industry TEXT, market TEXT, exchange TEXT, list_status TEXT, list_date TEXT, delist_date TEXT ); """, "daily": """ CREATE TABLE IF NOT EXISTS daily ( ts_code TEXT, trade_date TEXT, open REAL, high REAL, low REAL, close REAL, pre_close REAL, change REAL, pct_chg REAL, vol REAL, amount REAL, PRIMARY KEY (ts_code, trade_date) ); """, "daily_basic": """ CREATE TABLE IF NOT EXISTS daily_basic ( ts_code TEXT, trade_date TEXT, close REAL, turnover_rate REAL, turnover_rate_f REAL, volume_ratio REAL, pe REAL, pe_ttm REAL, pb REAL, ps REAL, ps_ttm REAL, dv_ratio REAL, dv_ttm REAL, total_share REAL, float_share REAL, free_share REAL, total_mv REAL, circ_mv REAL, PRIMARY KEY (ts_code, trade_date) ); """, "adj_factor": """ CREATE TABLE IF NOT EXISTS adj_factor ( ts_code TEXT, trade_date TEXT, adj_factor REAL, PRIMARY KEY (ts_code, trade_date) ); """, "suspend": """ CREATE TABLE IF NOT EXISTS suspend ( ts_code TEXT, suspend_date TEXT, resume_date TEXT, suspend_type TEXT, ann_date TEXT, suspend_timing TEXT, resume_timing TEXT, reason TEXT, PRIMARY KEY (ts_code, suspend_date) ); """, "trade_calendar": """ CREATE TABLE IF NOT EXISTS trade_calendar ( exchange TEXT, cal_date TEXT, is_open INTEGER, pretrade_date TEXT, PRIMARY KEY (exchange, cal_date) ); """, "stk_limit": """ CREATE TABLE IF NOT EXISTS stk_limit ( ts_code TEXT, trade_date TEXT, up_limit REAL, down_limit REAL, PRIMARY KEY (ts_code, trade_date) ); """, } _TABLE_COLUMNS: Dict[str, List[str]] = { "stock_basic": [ "ts_code", "symbol", "name", "area", "industry", "market", "exchange", "list_status", "list_date", "delist_date", ], "daily": [ "ts_code", "trade_date", "open", "high", "low", "close", "pre_close", "change", "pct_chg", "vol", "amount", ], "daily_basic": [ "ts_code", "trade_date", "close", "turnover_rate", "turnover_rate_f", "volume_ratio", "pe", "pe_ttm", "pb", "ps", "ps_ttm", "dv_ratio", "dv_ttm", "total_share", "float_share", "free_share", "total_mv", "circ_mv", ], "adj_factor": [ "ts_code", "trade_date", "adj_factor", ], "suspend": [ "ts_code", "suspend_date", "resume_date", "suspend_type", "ann_date", "suspend_timing", "resume_timing", "reason", ], "trade_calendar": [ "exchange", "cal_date", "is_open", "pretrade_date", ], "stk_limit": [ "ts_code", "trade_date", "up_limit", "down_limit", ], } def _ensure_client(): if ts is None: raise RuntimeError("未安装 tushare,请先在环境中安装 tushare 包") token = get_config().tushare_token or os.getenv("TUSHARE_TOKEN") if not token: raise RuntimeError("未配置 TuShare Token,请在配置文件或环境变量 TUSHARE_TOKEN 中设置") if not hasattr(_ensure_client, "_client") or _ensure_client._client is None: # type: ignore[attr-defined] ts.set_token(token) _ensure_client._client = ts.pro_api(token) # type: ignore[attr-defined] LOGGER.info("完成 TuShare 客户端初始化") return _ensure_client._client # type: ignore[attr-defined] def _format_date(value: date) -> str: return value.strftime("%Y%m%d") def _load_trade_dates(start: date, end: date, exchange: str = "SSE") -> List[str]: start_str = _format_date(start) end_str = _format_date(end) query = ( "SELECT cal_date FROM trade_calendar " "WHERE exchange = ? AND cal_date BETWEEN ? AND ? AND is_open = 1 ORDER BY cal_date" ) with db_session(read_only=True) as conn: rows = conn.execute(query, (exchange, start_str, end_str)).fetchall() return [row["cal_date"] for row in rows] def _record_exists( table: str, date_col: str, trade_date: str, ts_code: Optional[str] = None, ) -> bool: query = f"SELECT 1 FROM {table} WHERE {date_col} = ?" params: Tuple = (trade_date,) if ts_code: query += " AND ts_code = ?" params = (trade_date, ts_code) with db_session(read_only=True) as conn: row = conn.execute(query, params).fetchone() return row is not None def _should_skip_range(table: str, date_col: str, start: date, end: date, ts_code: str | None = None) -> bool: min_d, max_d = _existing_date_range(table, date_col, ts_code) if min_d is None or max_d is None: return False start_str = _format_date(start) end_str = _format_date(end) return min_d <= start_str and max_d >= end_str def _range_stats(table: str, date_col: str, start_str: str, end_str: str) -> Dict[str, Optional[str]]: sql = ( f"SELECT MIN({date_col}) AS min_d, MAX({date_col}) AS max_d, " f"COUNT(DISTINCT {date_col}) AS distinct_days FROM {table} " f"WHERE {date_col} BETWEEN ? AND ?" ) with db_session(read_only=True) as conn: row = conn.execute(sql, (start_str, end_str)).fetchone() return { "min": row["min_d"], "max": row["max_d"], "distinct": row["distinct_days"] if row else 0, } def _range_needs_refresh( table: str, date_col: str, start_str: str, end_str: str, expected_days: int = 0, ) -> bool: stats = _range_stats(table, date_col, start_str, end_str) if stats["min"] is None or stats["max"] is None: return True if stats["min"] > start_str or stats["max"] < end_str: return True if expected_days and (stats["distinct"] or 0) < expected_days: return True return False def _calendar_needs_refresh(exchange: str, start_str: str, end_str: str) -> bool: sql = """ SELECT MIN(cal_date) AS min_d, MAX(cal_date) AS max_d, COUNT(*) AS cnt FROM trade_calendar WHERE exchange = ? AND cal_date BETWEEN ? AND ? """ with db_session(read_only=True) as conn: row = conn.execute(sql, (exchange, start_str, end_str)).fetchone() if row is None or row["min_d"] is None: return True if row["min_d"] > start_str or row["max_d"] < end_str: return True # 交易日历允许不连续(节假日),此处不比较天数 return False def _expected_trading_days(start_str: str, end_str: str, exchange: str = "SSE") -> int: sql = """ SELECT COUNT(*) AS cnt FROM trade_calendar WHERE exchange = ? AND cal_date BETWEEN ? AND ? AND is_open = 1 """ with db_session(read_only=True) as conn: row = conn.execute(sql, (exchange, start_str, end_str)).fetchone() return int(row["cnt"]) if row and row["cnt"] is not None else 0 def fetch_stock_basic(exchange: Optional[str] = None, list_status: str = "L") -> Iterable[Dict]: client = _ensure_client() LOGGER.info("拉取股票基础信息(交易所:%s,状态:%s)", exchange or "全部", list_status) fields = "ts_code,symbol,name,area,industry,market,exchange,list_status,list_date,delist_date" df = client.stock_basic(exchange=exchange, list_status=list_status, fields=fields) return _df_to_records(df, _TABLE_COLUMNS["stock_basic"]) def fetch_daily_bars(job: FetchJob, skip_existing: bool = True) -> Iterable[Dict]: client = _ensure_client() frames: List[pd.DataFrame] = [] if job.granularity != "daily": raise ValueError(f"暂不支持的粒度:{job.granularity}") trade_dates = _load_trade_dates(job.start, job.end) if not trade_dates: LOGGER.info("本地交易日历缺失,尝试补全后再拉取日线行情", extra=LOG_EXTRA) ensure_trade_calendar(job.start, job.end) trade_dates = _load_trade_dates(job.start, job.end) if job.ts_codes: for code in job.ts_codes: for trade_date in trade_dates: if skip_existing and _record_exists("daily", "trade_date", trade_date, code): LOGGER.debug( "日线数据已存在,跳过 %s %s", code, trade_date, extra=LOG_EXTRA, ) continue LOGGER.debug( "按交易日拉取日线行情:code=%s trade_date=%s", code, trade_date, extra=LOG_EXTRA, ) LOGGER.info( "交易日拉取请求:endpoint=daily code=%s trade_date=%s", code, trade_date, extra=LOG_EXTRA, ) df = _fetch_paginated( "daily", { "trade_date": trade_date, "ts_code": code, }, ) if not df.empty: frames.append(df) else: for trade_date in trade_dates: if skip_existing and _record_exists("daily", "trade_date", trade_date): LOGGER.debug( "日线数据已存在,跳过交易日 %s", trade_date, extra=LOG_EXTRA, ) continue LOGGER.debug("按交易日拉取日线行情:%s", trade_date, extra=LOG_EXTRA) LOGGER.info( "交易日拉取请求:endpoint=daily trade_date=%s", trade_date, extra=LOG_EXTRA, ) df = _fetch_paginated("daily", {"trade_date": trade_date}) if not df.empty: frames.append(df) if not frames: return [] df = pd.concat(frames, ignore_index=True) return _df_to_records(df, _TABLE_COLUMNS["daily"]) def fetch_daily_basic( start: date, end: date, ts_code: Optional[str] = None, skip_existing: bool = True, ) -> Iterable[Dict]: client = _ensure_client() start_date = _format_date(start) end_date = _format_date(end) LOGGER.info( "拉取日线基础指标(%s-%s,股票:%s)", start_date, end_date, ts_code or "全部", extra=LOG_EXTRA, ) trade_dates = _load_trade_dates(start, end) frames: List[pd.DataFrame] = [] for trade_date in trade_dates: if skip_existing and _record_exists("daily_basic", "trade_date", trade_date, ts_code): LOGGER.info( "日线基础指标已存在,跳过交易日 %s", trade_date, extra=LOG_EXTRA, ) continue params = {"trade_date": trade_date} if ts_code: params["ts_code"] = ts_code LOGGER.info( "交易日拉取请求:endpoint=daily_basic params=%s", params, extra=LOG_EXTRA, ) df = _fetch_paginated("daily_basic", params) if not df.empty: frames.append(df) if not frames: return [] merged = pd.concat(frames, ignore_index=True) return _df_to_records(merged, _TABLE_COLUMNS["daily_basic"]) def fetch_adj_factor( start: date, end: date, ts_code: Optional[str] = None, skip_existing: bool = True, ) -> Iterable[Dict]: client = _ensure_client() start_date = _format_date(start) end_date = _format_date(end) LOGGER.info( "拉取复权因子(%s-%s,股票:%s)", start_date, end_date, ts_code or "全部", extra=LOG_EXTRA, ) trade_dates = _load_trade_dates(start, end) frames: List[pd.DataFrame] = [] for trade_date in trade_dates: if skip_existing and _record_exists("adj_factor", "trade_date", trade_date, ts_code): LOGGER.debug( "复权因子已存在,跳过 %s %s", ts_code or "ALL", trade_date, extra=LOG_EXTRA, ) continue params = {"trade_date": trade_date} if ts_code: params["ts_code"] = ts_code LOGGER.info("交易日拉取请求:endpoint=adj_factor params=%s", params, extra=LOG_EXTRA) df = _fetch_paginated("adj_factor", params) if not df.empty: frames.append(df) if not frames: return [] merged = pd.concat(frames, ignore_index=True) return _df_to_records(merged, _TABLE_COLUMNS["adj_factor"]) def fetch_suspensions( start: date, end: date, ts_code: Optional[str] = None, skip_existing: bool = True, ) -> Iterable[Dict]: client = _ensure_client() start_date = _format_date(start) end_date = _format_date(end) LOGGER.info("拉取停复牌信息(%s-%s)", start_date, end_date, extra=LOG_EXTRA) trade_dates = _load_trade_dates(start, end) frames: List[pd.DataFrame] = [] for trade_date in trade_dates: if skip_existing and _record_exists("suspend", "suspend_date", trade_date, ts_code): LOGGER.debug( "停复牌信息已存在,跳过 %s %s", ts_code or "ALL", trade_date, extra=LOG_EXTRA, ) continue params = {"trade_date": trade_date} if ts_code: params["ts_code"] = ts_code LOGGER.info("交易日拉取请求:endpoint=suspend_d params=%s", params, extra=LOG_EXTRA) df = _fetch_paginated("suspend_d", params, limit=2000) if not df.empty: frames.append(df) if not frames: return [] merged = pd.concat(frames, ignore_index=True) return _df_to_records(merged, _TABLE_COLUMNS["suspend"]) def fetch_trade_calendar(start: date, end: date, exchange: str = "SSE") -> Iterable[Dict]: client = _ensure_client() start_date = _format_date(start) end_date = _format_date(end) LOGGER.info("拉取交易日历(交易所:%s,区间:%s-%s)", exchange, start_date, end_date) df = client.trade_cal(exchange=exchange, start_date=start_date, end_date=end_date) if df is not None and not df.empty and "is_open" in df.columns: df["is_open"] = pd.to_numeric(df["is_open"], errors="coerce").fillna(0).astype(int) return _df_to_records(df, _TABLE_COLUMNS["trade_calendar"]) def fetch_stk_limit( start: date, end: date, ts_code: Optional[str] = None, skip_existing: bool = True, ) -> Iterable[Dict]: client = _ensure_client() start_date = _format_date(start) end_date = _format_date(end) LOGGER.info("拉取涨跌停价格(%s-%s)", start_date, end_date, extra=LOG_EXTRA) trade_dates = _load_trade_dates(start, end) frames: List[pd.DataFrame] = [] for trade_date in trade_dates: if skip_existing and _record_exists("stk_limit", "trade_date", trade_date, ts_code): LOGGER.debug( "涨跌停数据已存在,跳过 %s %s", ts_code or "ALL", trade_date, extra=LOG_EXTRA, ) continue params = {"trade_date": trade_date} if ts_code: params["ts_code"] = ts_code LOGGER.info("交易日拉取请求:endpoint=stk_limit params=%s", params, extra=LOG_EXTRA) df = _fetch_paginated("stk_limit", params) if not df.empty: frames.append(df) if not frames: return [] merged = pd.concat(frames, ignore_index=True) return _df_to_records(merged, _TABLE_COLUMNS["stk_limit"]) def save_records(table: str, rows: Iterable[Dict]) -> None: items = list(rows) if not items: LOGGER.info("表 %s 没有新增记录,跳过写入", table) return schema = _TABLE_SCHEMAS.get(table) columns = _TABLE_COLUMNS.get(table) if not schema or not columns: raise ValueError(f"不支持写入的表:{table}") placeholders = ",".join([f":{col}" for col in columns]) col_clause = ",".join(columns) LOGGER.info("表 %s 写入 %d 条记录", table, len(items)) with db_session() as conn: conn.executescript(schema) conn.executemany( f"INSERT OR REPLACE INTO {table} ({col_clause}) VALUES ({placeholders})", items, ) def ensure_stock_basic(list_status: str = "L") -> None: exchanges = ("SSE", "SZSE") with db_session(read_only=True) as conn: row = conn.execute( "SELECT COUNT(*) AS cnt FROM stock_basic WHERE exchange IN (?, ?) AND list_status = ?", (*exchanges, list_status), ).fetchone() if row and row["cnt"]: LOGGER.info("股票基础信息已存在 %d 条记录,跳过拉取", row["cnt"]) return for exch in exchanges: save_records("stock_basic", fetch_stock_basic(exchange=exch, list_status=list_status)) def ensure_trade_calendar(start: date, end: date, exchanges: Sequence[str] = ("SSE", "SZSE")) -> None: start_str = _format_date(start) end_str = _format_date(end) for exch in exchanges: if _calendar_needs_refresh(exch, start_str, end_str): save_records("trade_calendar", fetch_trade_calendar(start, end, exchange=exch)) def ensure_data_coverage( start: date, end: date, ts_codes: Optional[Sequence[str]] = None, include_limits: bool = True, force: bool = False, progress_hook: Callable[[str, float], None] | None = None, ) -> None: initialize_database() start_str = _format_date(start) end_str = _format_date(end) total_steps = 5 + (1 if include_limits else 0) current_step = 0 def advance(message: str) -> None: nonlocal current_step current_step += 1 progress = min(current_step / total_steps, 1.0) if progress_hook: progress_hook(message, progress) LOGGER.info(message) advance("准备股票基础信息与交易日历") ensure_stock_basic() ensure_trade_calendar(start, end) codes = tuple(dict.fromkeys(ts_codes)) if ts_codes else tuple() expected_days = _expected_trading_days(start_str, end_str) advance("处理日线行情数据") if codes: pending_codes: List[str] = [] for code in codes: if not force and _should_skip_range("daily", "trade_date", start, end, code): LOGGER.info("股票 %s 的日线已覆盖 %s-%s,跳过", code, start_str, end_str) continue pending_codes.append(code) if pending_codes: job = FetchJob("daily_autofill", start=start, end=end, ts_codes=tuple(pending_codes)) LOGGER.info("开始拉取日线行情:%s-%s(待补股票 %d 支)", start_str, end_str, len(pending_codes)) save_records("daily", fetch_daily_bars(job, skip_existing=not force)) else: needs_daily = force or _range_needs_refresh("daily", "trade_date", start_str, end_str, expected_days) if not needs_daily: LOGGER.info("日线数据已覆盖 %s-%s,跳过拉取", start_str, end_str) else: job = FetchJob("daily_autofill", start=start, end=end) LOGGER.info("开始拉取日线行情:%s-%s", start_str, end_str) save_records("daily", fetch_daily_bars(job, skip_existing=not force)) date_cols = { "daily_basic": "trade_date", "adj_factor": "trade_date", "stk_limit": "trade_date", "suspend": "suspend_date", } def _save_with_codes(table: str, fetch_fn) -> None: date_col = date_cols.get(table, "trade_date") if codes: for code in codes: if not force and _should_skip_range(table, date_col, start, end, code): LOGGER.info("表 %s 股票 %s 已覆盖 %s-%s,跳过", table, code, start_str, end_str) continue LOGGER.info("拉取 %s 表数据(股票:%s)%s-%s", table, code, start_str, end_str) try: kwargs = {"ts_code": code} if fetch_fn in (fetch_daily_basic, fetch_adj_factor, fetch_suspensions, fetch_stk_limit): kwargs["skip_existing"] = not force rows = fetch_fn(start, end, **kwargs) except Exception: LOGGER.exception("TuShare 拉取失败:table=%s code=%s", table, code) raise save_records(table, rows) else: needs_refresh = force if not force: expected = expected_days if table in {"daily_basic", "adj_factor", "stk_limit"} else 0 needs_refresh = _range_needs_refresh(table, date_col, start_str, end_str, expected) if not needs_refresh: LOGGER.info("表 %s 已覆盖 %s-%s,跳过", table, start_str, end_str) return LOGGER.info("拉取 %s 表数据(全市场)%s-%s", table, start_str, end_str) try: kwargs = {} if fetch_fn in (fetch_daily_basic, fetch_adj_factor, fetch_suspensions, fetch_stk_limit): kwargs["skip_existing"] = not force rows = fetch_fn(start, end, **kwargs) except Exception: LOGGER.exception("TuShare 拉取失败:table=%s code=全部", table) raise save_records(table, rows) advance("处理日线基础指标数据") _save_with_codes("daily_basic", fetch_daily_basic) advance("处理复权因子数据") _save_with_codes("adj_factor", fetch_adj_factor) if include_limits: advance("处理涨跌停价格数据") _save_with_codes("stk_limit", fetch_stk_limit) advance("处理停复牌信息") _save_with_codes("suspend", fetch_suspensions) if progress_hook: progress_hook("数据覆盖检查完成", 1.0) def collect_data_coverage(start: date, end: date) -> Dict[str, Dict[str, object]]: start_str = _format_date(start) end_str = _format_date(end) expected_days = _expected_trading_days(start_str, end_str) coverage: Dict[str, Dict[str, object]] = { "period": { "start": start_str, "end": end_str, "expected_trading_days": expected_days, } } def add_table(name: str, date_col: str, require_days: bool = True) -> None: stats = _range_stats(name, date_col, start_str, end_str) coverage[name] = { "min": stats["min"], "max": stats["max"], "distinct_days": stats["distinct"], "meets_expectation": ( stats["min"] is not None and stats["max"] is not None and stats["min"] <= start_str and stats["max"] >= end_str and ((not require_days) or (stats["distinct"] or 0) >= expected_days) ), } add_table("daily", "trade_date") add_table("daily_basic", "trade_date") add_table("adj_factor", "trade_date") add_table("stk_limit", "trade_date") add_table("suspend", "suspend_date", require_days=False) with db_session(read_only=True) as conn: stock_tot = conn.execute("SELECT COUNT(*) AS cnt FROM stock_basic").fetchone() stock_sse = conn.execute( "SELECT COUNT(*) AS cnt FROM stock_basic WHERE exchange = 'SSE' AND list_status = 'L'" ).fetchone() stock_szse = conn.execute( "SELECT COUNT(*) AS cnt FROM stock_basic WHERE exchange = 'SZSE' AND list_status = 'L'" ).fetchone() coverage["stock_basic"] = { "total": stock_tot["cnt"] if stock_tot else 0, "sse_listed": stock_sse["cnt"] if stock_sse else 0, "szse_listed": stock_szse["cnt"] if stock_szse else 0, } return coverage def run_ingestion(job: FetchJob, include_limits: bool = True) -> None: LOGGER.info("启动 TuShare 拉取任务:%s", job.name) ensure_data_coverage( job.start, job.end, ts_codes=job.ts_codes, include_limits=include_limits, force=True, ) LOGGER.info("任务 %s 完成", job.name)