"""Backtest engine skeleton for daily bar simulation.""" from __future__ import annotations import json from dataclasses import dataclass, field from datetime import date from statistics import mean, pstdev from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional from app.agents.base import AgentContext from app.agents.departments import DepartmentManager from app.agents.game import Decision, decide from app.llm.metrics import record_decision as metrics_record_decision from app.agents.registry import default_agents from app.utils.data_access import DataBroker from app.utils.config import get_config from app.utils.db import db_session from app.utils.logging import get_logger LOGGER = get_logger(__name__) LOG_EXTRA = {"stage": "backtest"} def _compute_momentum(values: List[float], window: int) -> float: if window <= 0 or len(values) < window: return 0.0 latest = values[0] past = values[window - 1] if past is None or past == 0: return 0.0 try: return (latest / past) - 1.0 except ZeroDivisionError: return 0.0 def _compute_volatility(values: List[float], window: int) -> float: if len(values) < 2 or window <= 1: return 0.0 limit = min(window, len(values) - 1) returns: List[float] = [] for idx in range(limit): current = values[idx] previous = values[idx + 1] if previous is None or previous == 0: continue returns.append((current / previous) - 1.0) if len(returns) < 2: return 0.0 return float(pstdev(returns)) def _normalize(value: Any, factor: float) -> float: try: numeric = float(value) except (TypeError, ValueError): return 0.0 if factor <= 0: return max(0.0, min(1.0, numeric)) return max(0.0, min(1.0, numeric / factor)) @dataclass class BtConfig: id: str name: str start_date: date end_date: date universe: List[str] params: Dict[str, float] method: str = "nash" @dataclass class PortfolioState: cash: float = 1_000_000.0 holdings: Dict[str, float] = field(default_factory=dict) @dataclass class BacktestResult: nav_series: List[Dict[str, float]] = field(default_factory=list) trades: List[Dict[str, str]] = field(default_factory=list) class BacktestEngine: """Runs the multi-agent game inside a daily event-driven loop.""" def __init__(self, cfg: BtConfig) -> None: self.cfg = cfg self.agents = default_agents() app_cfg = get_config() weight_config = app_cfg.agent_weights.as_dict() if app_cfg.agent_weights else {} if weight_config: self.weights = weight_config else: self.weights = {agent.name: 1.0 for agent in self.agents} self.department_manager = ( DepartmentManager(app_cfg) if app_cfg.departments else None ) self.data_broker = DataBroker() department_scope: set[str] = set() for settings in app_cfg.departments.values(): department_scope.update(settings.data_scope) base_scope = { "daily.close", "daily.open", "daily.high", "daily.low", "daily.pct_chg", "daily.vol", "daily.amount", "daily_basic.turnover_rate", "daily_basic.turnover_rate_f", "daily_basic.volume_ratio", "stk_limit.up_limit", "stk_limit.down_limit", } self.required_fields = sorted(base_scope | department_scope) def load_market_data(self, trade_date: date) -> Mapping[str, Dict[str, Any]]: """Load per-stock feature vectors and context slices for the trade date.""" trade_date_str = trade_date.strftime("%Y%m%d") feature_map: Dict[str, Dict[str, Any]] = {} universe = self.cfg.universe or [] for ts_code in universe: scope_values = self.data_broker.fetch_latest( ts_code, trade_date_str, self.required_fields, ) closes = self.data_broker.fetch_series( "daily", "close", ts_code, trade_date_str, window=60, ) close_values = [value for _date, value in closes] mom20 = _compute_momentum(close_values, 20) mom60 = _compute_momentum(close_values, 60) volat20 = _compute_volatility(close_values, 20) turnover_series = self.data_broker.fetch_series( "daily_basic", "turnover_rate", ts_code, trade_date_str, window=20, ) turnover_values = [value for _date, value in turnover_series] turn20 = mean(turnover_values) if turnover_values else 0.0 liquidity_score = _normalize(turn20, factor=20.0) cost_penalty = _normalize(scope_values.get("daily_basic.volume_ratio", 0.0), factor=50.0) latest_close = scope_values.get("daily.close", 0.0) latest_pct = scope_values.get("daily.pct_chg", 0.0) latest_turnover = scope_values.get("daily_basic.turnover_rate", 0.0) up_limit = scope_values.get("stk_limit.up_limit") limit_up = False if up_limit and latest_close: limit_up = latest_close >= up_limit * 0.999 down_limit = scope_values.get("stk_limit.down_limit") limit_down = False if down_limit and latest_close: limit_down = latest_close <= down_limit * 1.001 is_suspended = self.data_broker.fetch_flags( "suspend", ts_code, trade_date_str, "suspend_date <= ? AND (resume_date IS NULL OR resume_date > ?)", (trade_date_str, trade_date_str), ) features = { "mom_20": mom20, "mom_60": mom60, "volat_20": volat20, "turn_20": turn20, "liquidity_score": liquidity_score, "cost_penalty": cost_penalty, "news_heat": scope_values.get("news.heat_score", 0.0), "news_sentiment": scope_values.get("news.sentiment_index", 0.0), "industry_heat": scope_values.get("macro.industry_heat", 0.0), "industry_relative_mom": scope_values.get( "macro.relative_strength", scope_values.get("index.performance_peers", 0.0), ), "risk_penalty": min(1.0, volat20 * 5.0), "is_suspended": is_suspended, "limit_up": limit_up, "limit_down": limit_down, "position_limit": False, } market_snapshot = { "close": latest_close, "pct_chg": latest_pct, "turnover_rate": latest_turnover, "volume": scope_values.get("daily.vol", 0.0), "amount": scope_values.get("daily.amount", 0.0), "up_limit": up_limit, "down_limit": down_limit, } raw_payload = { "scope_values": scope_values, "close_series": closes, "turnover_series": turnover_series, "required_fields": self.required_fields, } feature_map[ts_code] = { "features": features, "market_snapshot": market_snapshot, "raw": raw_payload, } return feature_map def simulate_day( self, trade_date: date, state: PortfolioState, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> List[Decision]: feature_map = self.load_market_data(trade_date) decisions: List[Decision] = [] for ts_code, payload in feature_map.items(): features = payload.get("features", {}) market_snapshot = payload.get("market_snapshot", {}) raw = payload.get("raw", {}) context = AgentContext( ts_code=ts_code, trade_date=trade_date.isoformat(), features=features, market_snapshot=market_snapshot, raw=raw, ) decision = decide( context, self.agents, self.weights, method=self.cfg.method, department_manager=self.department_manager, ) decisions.append(decision) self.record_agent_state(context, decision) if decision_callback: try: decision_callback(ts_code, trade_date, context, decision) except Exception: # noqa: BLE001 LOGGER.exception("决策回调执行失败", extra=LOG_EXTRA) try: metrics_record_decision( ts_code=ts_code, trade_date=context.trade_date, action=decision.action.value, confidence=decision.confidence, summary=decision.summary, source="backtest", departments={ code: dept.to_dict() for code, dept in decision.department_decisions.items() }, ) except Exception: # noqa: BLE001 LOGGER.debug("记录决策指标失败", extra=LOG_EXTRA) # TODO: translate decisions into fills, holdings, and NAV updates. _ = state return decisions def record_agent_state(self, context: AgentContext, decision: Decision) -> None: payload = { "trade_date": context.trade_date, "ts_code": context.ts_code, "action": decision.action.value, "confidence": decision.confidence, "department_votes": decision.department_votes, "requires_review": decision.requires_review, "departments": { code: dept.to_dict() for code, dept in decision.department_decisions.items() }, } combined_weights = dict(self.weights) if self.department_manager: for code, agent in self.department_manager.agents.items(): key = f"dept_{code}" combined_weights[key] = agent.settings.weight feasible_json = json.dumps( [action.value for action in decision.feasible_actions], ensure_ascii=False, ) rows = [] for agent_name, weight in combined_weights.items(): action_scores = { action.value: float(decision.utilities.get(action, {}).get(agent_name, 0.0)) for action in decision.utilities.keys() } best_action = decision.action.value if action_scores: best_action = max(action_scores.items(), key=lambda item: item[1])[0] metadata: Dict[str, object] = {} if agent_name.startswith("dept_"): dept_code = agent_name.split("dept_", 1)[-1] dept_decision = decision.department_decisions.get(dept_code) if dept_decision: metadata = { "_summary": dept_decision.summary, "_signals": dept_decision.signals, "_risks": dept_decision.risks, "_confidence": dept_decision.confidence, } if dept_decision.supplements: metadata["_supplements"] = dept_decision.supplements if dept_decision.dialogue: metadata["_dialogue"] = dept_decision.dialogue payload_json = {**action_scores, **metadata} rows.append( ( context.trade_date, context.ts_code, agent_name, best_action, json.dumps(payload_json, ensure_ascii=False), feasible_json, float(weight), ) ) global_payload = { "_confidence": decision.confidence, "_target_weight": decision.target_weight, "_department_votes": decision.department_votes, "_requires_review": decision.requires_review, "_scope_values": context.raw.get("scope_values", {}), "_close_series": context.raw.get("close_series", []), "_turnover_series": context.raw.get("turnover_series", []), "_department_supplements": { code: dept.supplements for code, dept in decision.department_decisions.items() if dept.supplements }, "_department_dialogue": { code: dept.dialogue for code, dept in decision.department_decisions.items() if dept.dialogue }, } rows.append( ( context.trade_date, context.ts_code, "global", decision.action.value, json.dumps(global_payload, ensure_ascii=False), feasible_json, 1.0, ) ) try: with db_session() as conn: conn.executemany( """ INSERT OR REPLACE INTO agent_utils (trade_date, ts_code, agent, action, utils, feasible, weight) VALUES (?, ?, ?, ?, ?, ?, ?) """, rows, ) except Exception: LOGGER.exception("写入 agent_utils 失败", extra=LOG_EXTRA) _ = payload # TODO: persist payload into bt_trades / audit tables when schema is ready. def run( self, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: state = PortfolioState() result = BacktestResult() current = self.cfg.start_date while current <= self.cfg.end_date: decisions = self.simulate_day(current, state, decision_callback) _ = decisions current = date.fromordinal(current.toordinal() + 1) return result def run_backtest( cfg: BtConfig, *, decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None, ) -> BacktestResult: engine = BacktestEngine(cfg) result = engine.run(decision_callback=decision_callback) with db_session() as conn: _ = conn # Implementation should persist bt_nav, bt_trades, and bt_report rows. return result