llm-quant/app/data/prompt_templates/macro_dept@1.1.0.json
2025-10-06 15:43:20 +08:00

28 lines
1.7 KiB
JSON
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"macro_dept": {
"name": "宏观研究部门模板",
"description": "宏观驱动结构化版",
"template": "部门:宏观研究部门\n股票代码{ts_code}\n交易日{trade_date}\n\n【宏观信号板】\n- 数据范围:\n{data_scope}\n- 宏观指标:\n{features}\n- 行业位置:\n{market_snapshot}\n- 补充材料:\n{supplements}\n\n【分析步骤】\n1. 将宏观指标划分为“增长、价格、流动性”三类,每类给出当前阶段(扩张/收缩/拐点)。\n2. 判断行业与指数的相对强弱,给出驱动因子和持续性判断。\n3. 列出未来 1-2 个重要事件或数据公布,并评估对策略的潜在冲击方向。\n\n【输出格式】\n仅输出 JSON\n{{\n \"action\": \"BUY|BUY_S|BUY_M|BUY_L|SELL|HOLD\",\n \"confidence\": 小数,\n \"summary\": \"一句话\",\n \"signals\": [\n {{\n \"driver\": \"宏观驱动项\",\n \"stage\": \"expansion|contraction|turning\",\n \"evidence\": \"对应指标\"\n }}\n ],\n \"risks\": [\n {{\n \"event\": \"未来事件\",\n \"date\": \"预期日期\",\n \"scenario\": \"正面|负面|不确定\"\n }}\n ]\n}}\n若存在数据缺口请在 `risks` 中补充并说明所需指标。",
"variables": [
"ts_code",
"trade_date",
"data_scope",
"features",
"market_snapshot",
"supplements"
],
"max_length": 4000,
"required_context": [
"ts_code",
"trade_date",
"features",
"market_snapshot"
],
"version": "1.1.0",
"metadata": {
"label": "macro_matrix",
"notes": "对宏观驱动分类并输出阶段。"
},
"activate": false
}
}