llm-quant/app/backtest/optimizer.py

293 lines
11 KiB
Python

"""Optimization utilities for DecisionEnv-based parameter tuning."""
from __future__ import annotations
import math
import random
from dataclasses import dataclass, field
from typing import Any, Dict, Iterable, List, Mapping, Sequence, Tuple
import numpy as np
from app.backtest.decision_env import DecisionEnv, EpisodeMetrics
from app.backtest.decision_env import ParameterSpec
from app.utils.logging import get_logger
from app.utils.tuning import log_tuning_result
LOGGER = get_logger(__name__)
LOG_EXTRA = {"stage": "decision_bandit"}
@dataclass
class BanditConfig:
"""Configuration shared by all global parameter search strategies."""
experiment_id: str
strategy: str = "epsilon_greedy"
episodes: int = 20
epsilon: float = 0.2
seed: int | None = None
exploration_weight: float = 0.01
candidate_pool: int = 128
initial_candidates: int = 27
eta: int = 3
max_rounds: int = 3
@dataclass
class BanditEpisode:
action: Dict[str, float]
resolved_action: Dict[str, Any]
reward: float
metrics: EpisodeMetrics
observation: Dict[str, float]
weights: Mapping[str, float] | None = None
department_controls: Mapping[str, Mapping[str, Any]] | None = None
@dataclass
class BanditSummary:
episodes: List[BanditEpisode] = field(default_factory=list)
@property
def best_episode(self) -> BanditEpisode | None:
if not self.episodes:
return None
return max(self.episodes, key=lambda item: item.reward)
@property
def average_reward(self) -> float:
if not self.episodes:
return 0.0
return sum(item.reward for item in self.episodes) / len(self.episodes)
class _BaseOptimizer:
"""Shared helpers for global parameter search algorithms."""
def __init__(self, env: DecisionEnv, config: BanditConfig) -> None:
self.env = env
self.config = config
self._specs: List[ParameterSpec] = list(getattr(env, "_specs", []))
if not self._specs:
raise ValueError("DecisionEnv does not expose parameter specs")
self._history = BanditSummary()
self._random = random.Random(config.seed)
def _evaluate_action(self, action: Sequence[float]) -> Tuple[float, EpisodeMetrics, Dict[str, float], Dict[str, Any]]:
self.env.reset()
cumulative_reward = 0.0
obs: Dict[str, float] = {}
info: Dict[str, Any] = {}
done = False
while not done:
obs, reward, done, info = self.env.step(action)
cumulative_reward += reward
metrics = self.env.last_metrics
if metrics is None:
raise RuntimeError("DecisionEnv did not populate last_metrics")
return cumulative_reward, metrics, obs, info
def _record_episode(
self,
action: Sequence[float],
reward: float,
metrics: EpisodeMetrics,
obs: Dict[str, float],
info: Dict[str, Any],
) -> None:
action_payload = self._raw_action_mapping(action)
resolved_action = self._resolved_action_mapping(action)
metrics_payload = _metrics_to_dict(metrics)
department_controls = info.get("department_controls")
if department_controls:
metrics_payload["department_controls"] = department_controls
metrics_payload["resolved_action"] = resolved_action
try:
log_tuning_result(
experiment_id=self.config.experiment_id,
strategy=self.config.strategy,
action=action_payload,
reward=reward,
metrics=metrics_payload,
weights=info.get("weights"),
)
except Exception: # noqa: BLE001
LOGGER.exception("failed to log tuning result", extra=LOG_EXTRA)
episode_record = BanditEpisode(
action=action_payload,
resolved_action=resolved_action,
reward=reward,
metrics=metrics,
observation=obs,
weights=info.get("weights"),
department_controls=department_controls,
)
self._history.episodes.append(episode_record)
def _raw_action_mapping(self, action: Sequence[float]) -> Dict[str, float]:
return {
spec.name: float(value)
for spec, value in zip(self._specs, action, strict=True)
}
def _resolved_action_mapping(self, action: Sequence[float]) -> Dict[str, Any]:
return {
spec.name: spec.resolve(value)
for spec, value in zip(self._specs, action, strict=True)
}
def _sample_random_action(self) -> List[float]:
values: List[float] = []
for spec in self._specs:
if spec.values:
if len(spec.values) <= 1:
values.append(0.0)
else:
index = self._random.randrange(len(spec.values))
values.append(index / (len(spec.values) - 1))
else:
values.append(self._random.random())
return values
def _mutate_action(self, action: Sequence[float], scale: float = 0.1) -> List[float]:
mutated = []
for value in action:
jitter = self._random.gauss(0.0, scale)
mutated.append(min(1.0, max(0.0, float(value + jitter))))
return mutated
class EpsilonGreedyBandit(_BaseOptimizer):
"""Epsilon-greedy tuner using DecisionEnv as the reward oracle."""
def __init__(self, env: DecisionEnv, config: BanditConfig) -> None:
super().__init__(env, config)
self._value_estimates: Dict[Tuple[float, ...], float] = {}
self._counts: Dict[Tuple[float, ...], int] = {}
def run(self) -> BanditSummary:
for episode in range(1, self.config.episodes + 1):
action = self._select_action()
reward, metrics, obs, info = self._evaluate_action(action)
key = tuple(action)
old_estimate = self._value_estimates.get(key, 0.0)
count = self._counts.get(key, 0) + 1
self._counts[key] = count
self._value_estimates[key] = old_estimate + (reward - old_estimate) / count
self._record_episode(action, reward, metrics, obs, info)
LOGGER.info(
"Bandit episode=%s reward=%.4f action=%s",
episode,
reward,
self._raw_action_mapping(action),
extra=LOG_EXTRA,
)
return self._history
def _select_action(self) -> List[float]:
if self._value_estimates and self._random.random() > self.config.epsilon:
best = max(self._value_estimates.items(), key=lambda item: item[1])[0]
return list(best)
return self._sample_random_action()
class BayesianBandit(_BaseOptimizer):
"""Gaussian-process based Bayesian optimization."""
def __init__(self, env: DecisionEnv, config: BanditConfig) -> None:
super().__init__(env, config)
self._X: List[np.ndarray] = []
self._y: List[float] = []
self._noise = 1e-6
self._length_scale = 0.3
def run(self) -> BanditSummary:
for _ in range(self.config.episodes):
action = self._propose_action()
reward, metrics, obs, info = self._evaluate_action(action)
self._record_episode(action, reward, metrics, obs, info)
self._X.append(np.array(action, dtype=float))
self._y.append(reward)
return self._history
def _propose_action(self) -> List[float]:
if not self._X:
return self._sample_random_action()
X = np.vstack(self._X)
y = np.asarray(self._y, dtype=float)
K = self._kernel(X, X) + self._noise * np.eye(len(X))
try:
K_inv = np.linalg.inv(K)
except np.linalg.LinAlgError:
K_inv = np.linalg.pinv(K)
best_y = max(y)
candidates = [self._sample_random_action() for _ in range(self.config.candidate_pool)]
ei_values: List[Tuple[float, List[float]]] = []
for candidate in candidates:
x = np.asarray(candidate, dtype=float)
k_star = self._kernel(X, x[None, :])[:, 0]
mean = float(k_star @ K_inv @ y)
k_ss = float(self._kernel(x[None, :], x[None, :])[0, 0])
variance = max(k_ss - k_star @ K_inv @ k_star, 1e-9)
std = math.sqrt(variance)
improvement = mean - best_y - self.config.exploration_weight
z = improvement / std if std > 0 else 0.0
cdf = 0.5 * (1.0 + math.erf(z / math.sqrt(2.0)))
pdf = (1.0 / math.sqrt(2.0 * math.pi)) * math.exp(-0.5 * z * z)
ei = improvement * cdf + std * pdf if std > 0 else max(improvement, 0.0)
ei_values.append((ei, candidate))
ei_values.sort(key=lambda item: item[0], reverse=True)
best = ei_values[0][1] if ei_values else self._sample_random_action()
return best
def _kernel(self, x1: np.ndarray, x2: np.ndarray) -> np.ndarray:
sq_dist = np.sum((x1[:, None, :] - x2[None, :, :]) ** 2, axis=2)
return np.exp(-0.5 * sq_dist / (self._length_scale ** 2))
class SuccessiveHalvingOptimizer(_BaseOptimizer):
"""Simplified BOHB-style successive halving optimizer."""
def run(self) -> BanditSummary:
num_candidates = max(1, self.config.initial_candidates)
eta = max(2, self.config.eta)
actions = [self._sample_random_action() for _ in range(num_candidates)]
for round_idx in range(self.config.max_rounds):
if not actions:
break
evaluations: List[Tuple[float, List[float]]] = []
for action in actions:
reward, metrics, obs, info = self._evaluate_action(action)
self._record_episode(action, reward, metrics, obs, info)
evaluations.append((reward, action))
evaluations.sort(key=lambda item: item[0], reverse=True)
survivors = max(1, len(evaluations) // eta)
actions = [action for _, action in evaluations[:survivors]]
if len(actions) == 1:
break
actions = [self._mutate_action(action, scale=0.05 * (round_idx + 1)) for action in actions]
return self._history
def _metrics_to_dict(metrics: EpisodeMetrics) -> Dict[str, float | Dict[str, int]]:
payload: Dict[str, float | Dict[str, int]] = {
"total_return": metrics.total_return,
"max_drawdown": metrics.max_drawdown,
"volatility": metrics.volatility,
"sharpe_like": metrics.sharpe_like,
"calmar_like": metrics.calmar_like,
"turnover": metrics.turnover,
"turnover_value": metrics.turnover_value,
"trade_count": float(metrics.trade_count),
"risk_count": float(metrics.risk_count),
}
if metrics.risk_breakdown:
payload["risk_breakdown"] = dict(metrics.risk_breakdown)
return payload