llm-quant/app/backtest/decision_env.py
2025-09-29 14:59:39 +08:00

181 lines
6.0 KiB
Python

"""Reinforcement-learning style environment wrapping the backtest engine."""
from __future__ import annotations
from dataclasses import dataclass, replace
from typing import Callable, Dict, Iterable, List, Mapping, Optional, Sequence, Tuple
import math
from .engine import BacktestEngine, BacktestResult, BtConfig
from app.agents.game import Decision
from app.agents.registry import weight_map
from app.utils.logging import get_logger
LOGGER = get_logger(__name__)
LOG_EXTRA = {"stage": "decision_env"}
@dataclass(frozen=True)
class ParameterSpec:
"""Defines how a scalar action dimension maps to strategy parameters."""
name: str
target: str
minimum: float = 0.0
maximum: float = 1.0
def clamp(self, value: float) -> float:
clipped = max(0.0, min(1.0, float(value)))
return self.minimum + clipped * (self.maximum - self.minimum)
@dataclass
class EpisodeMetrics:
total_return: float
max_drawdown: float
volatility: float
nav_series: List[Dict[str, float]]
trades: List[Dict[str, object]]
@property
def sharpe_like(self) -> float:
if self.volatility <= 1e-9:
return 0.0
return self.total_return / self.volatility
class DecisionEnv:
"""Thin RL-friendly wrapper that evaluates parameter actions via backtest."""
def __init__(
self,
*,
bt_config: BtConfig,
parameter_specs: Sequence[ParameterSpec],
baseline_weights: Mapping[str, float],
reward_fn: Optional[Callable[[EpisodeMetrics], float]] = None,
disable_departments: bool = False,
) -> None:
self._template_cfg = bt_config
self._specs = list(parameter_specs)
self._baseline_weights = dict(baseline_weights)
self._reward_fn = reward_fn or self._default_reward
self._last_metrics: Optional[EpisodeMetrics] = None
self._last_action: Optional[Tuple[float, ...]] = None
self._episode = 0
self._disable_departments = bool(disable_departments)
@property
def action_dim(self) -> int:
return len(self._specs)
def reset(self) -> Dict[str, float]:
self._episode += 1
self._last_metrics = None
self._last_action = None
return {
"episode": float(self._episode),
"baseline_return": 0.0,
}
def step(self, action: Sequence[float]) -> Tuple[Dict[str, float], float, bool, Dict[str, object]]:
if len(action) != self.action_dim:
raise ValueError(f"expected action length {self.action_dim}, got {len(action)}")
action_array = [float(val) for val in action]
self._last_action = tuple(action_array)
weights = self._build_weights(action_array)
LOGGER.info("episode=%s action=%s weights=%s", self._episode, action_array, weights, extra=LOG_EXTRA)
cfg = replace(self._template_cfg)
engine = BacktestEngine(cfg)
engine.weights = weight_map(weights)
if self._disable_departments:
engine.department_manager = None
try:
result = engine.run()
except Exception as exc: # noqa: BLE001
LOGGER.exception("backtest failed under action", extra={**LOG_EXTRA, "error": str(exc)})
info = {"error": str(exc)}
return {"failure": 1.0}, -1.0, True, info
metrics = self._compute_metrics(result)
reward = float(self._reward_fn(metrics))
self._last_metrics = metrics
observation = {
"total_return": metrics.total_return,
"max_drawdown": metrics.max_drawdown,
"volatility": metrics.volatility,
"sharpe_like": metrics.sharpe_like,
}
info = {
"nav_series": metrics.nav_series,
"trades": metrics.trades,
"weights": weights,
}
return observation, reward, True, info
def _build_weights(self, action: Sequence[float]) -> Dict[str, float]:
weights = dict(self._baseline_weights)
for idx, spec in enumerate(self._specs):
value = spec.clamp(action[idx])
if spec.target.startswith("agent_weights."):
agent_name = spec.target.split(".", 1)[1]
weights[agent_name] = value
else:
LOGGER.debug("暂未支持的参数目标:%s", spec.target, extra=LOG_EXTRA)
return weights
def _compute_metrics(self, result: BacktestResult) -> EpisodeMetrics:
nav_series = result.nav_series or []
if not nav_series:
return EpisodeMetrics(0.0, 0.0, 0.0, [], result.trades)
nav_values = [row.get("nav", 0.0) for row in nav_series]
if not nav_values or nav_values[0] == 0:
base_nav = nav_values[0] if nav_values else 1.0
else:
base_nav = nav_values[0]
returns = [(nav / base_nav) - 1.0 for nav in nav_values]
total_return = returns[-1]
peak = nav_values[0]
max_drawdown = 0.0
for nav in nav_values:
if nav > peak:
peak = nav
drawdown = (peak - nav) / peak if peak else 0.0
max_drawdown = max(max_drawdown, drawdown)
diffs = [nav_values[idx] - nav_values[idx - 1] for idx in range(1, len(nav_values))]
if diffs:
mean_diff = sum(diffs) / len(diffs)
variance = sum((diff - mean_diff) ** 2 for diff in diffs) / len(diffs)
volatility = math.sqrt(variance) / base_nav
else:
volatility = 0.0
return EpisodeMetrics(
total_return=float(total_return),
max_drawdown=float(max_drawdown),
volatility=volatility,
nav_series=nav_series,
trades=result.trades,
)
@staticmethod
def _default_reward(metrics: EpisodeMetrics) -> float:
penalty = 0.5 * metrics.max_drawdown
return metrics.total_return - penalty
@property
def last_metrics(self) -> Optional[EpisodeMetrics]:
return self._last_metrics
@property
def last_action(self) -> Optional[Tuple[float, ...]]:
return self._last_action