llm-quant/app/backtest/engine.py

1448 lines
57 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Backtest engine skeleton for daily bar simulation."""
from __future__ import annotations
import json
import sqlite3
from collections import defaultdict
from dataclasses import dataclass, field
from datetime import date, datetime
from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple
from app.agents.base import AgentAction, AgentContext
from app.agents.departments import DepartmentManager
from app.agents.game import Decision, decide, target_weight_for_action
from app.agents.protocols import GameStructure, round_to_dict
from app.agents.scopes import scope_for_structures
from app.llm.metrics import record_decision as metrics_record_decision
from app.agents.registry import default_agents
from app.data.schema import initialize_database
from app.utils.data_access import DataBroker
from app.utils.feature_snapshots import FeatureSnapshotService
from app.utils.config import PortfolioSettings, get_config
from app.utils.db import db_session
from app.utils.logging import get_logger
from app.utils import alerts
from app.core.indicators import momentum, normalize, rolling_mean, volatility
LOGGER = get_logger(__name__)
LOG_EXTRA = {"stage": "backtest"}
def _valuation_score(value: object, scale: float) -> float:
try:
numeric = float(value)
except (TypeError, ValueError):
return 0.0
if numeric <= 0:
return 0.0
score = scale / (scale + numeric)
return max(0.0, min(1.0, score))
def _volume_ratio_score(value: object) -> float:
try:
numeric = float(value)
except (TypeError, ValueError):
return 0.0
if numeric < 0:
numeric = 0.0
return max(0.0, min(1.0, numeric / 10.0))
@dataclass
class BtConfig:
id: str
name: str
start_date: date
end_date: date
universe: List[str]
params: Dict[str, float]
method: str = "nash"
game_structures: Optional[List[GameStructure]] = None
@dataclass
class PortfolioState:
cash: float = 1_000_000.0
holdings: Dict[str, float] = field(default_factory=dict)
cost_basis: Dict[str, float] = field(default_factory=dict)
opened_dates: Dict[str, str] = field(default_factory=dict)
realized_pnl: float = 0.0
@dataclass
class BacktestResult:
nav_series: List[Dict[str, float]] = field(default_factory=list)
trades: List[Dict[str, str]] = field(default_factory=list)
risk_events: List[Dict[str, object]] = field(default_factory=list)
data_gaps: List[Dict[str, object]] = field(default_factory=list)
@dataclass
class BacktestSession:
"""Holds the mutable state for incremental backtest execution."""
state: PortfolioState
result: BacktestResult
current_date: date
class BacktestEngine:
"""Runs the multi-agent game inside a daily event-driven loop."""
def __init__(self, cfg: BtConfig) -> None:
self.cfg = cfg
self.agents = default_agents()
app_cfg = get_config()
weight_config = app_cfg.agent_weights.as_dict() if app_cfg.agent_weights else {}
if weight_config:
self.weights = weight_config
else:
self.weights = {agent.name: 1.0 for agent in self.agents}
initialize_database()
self.department_manager = (
DepartmentManager(app_cfg) if app_cfg.departments else None
)
self.data_broker = DataBroker()
params = cfg.params or {}
portfolio_cfg = getattr(app_cfg, "portfolio", None) or PortfolioSettings()
self.risk_params = {
"max_position_weight": float(params.get("max_position_weight", 0.2)),
"max_daily_turnover_ratio": float(params.get("max_daily_turnover_ratio", 0.25)),
"fee_rate": float(params.get("fee_rate", 0.0005)),
"slippage_bps": float(params.get("slippage_bps", 10.0)),
}
self.initial_cash = max(0.0, float(params.get("initial_capital", portfolio_cfg.initial_capital)))
target_return = params.get("target", params.get("target_return", 0.0)) or 0.0
stop_loss = params.get("stop", params.get("stop_loss", 0.0)) or 0.0
hold_days_param = params.get("hold_days", params.get("max_hold_days", 0))
try:
max_hold_days = int(hold_days_param) if hold_days_param is not None else 0
except (TypeError, ValueError):
max_hold_days = 0
self.trading_rules = {
"target_return": float(target_return),
"stop_loss": float(stop_loss),
"max_hold_days": max(0, max_hold_days),
}
self._fee_rate = max(self.risk_params["fee_rate"], 0.0)
self._slippage_rate = max(self.risk_params["slippage_bps"], 0.0) / 10_000.0
self._turnover_cap = max(self.risk_params["max_daily_turnover_ratio"], 0.0)
self._buy_actions = {
AgentAction.BUY_S,
AgentAction.BUY_M,
AgentAction.BUY_L,
}
self._sell_actions = {AgentAction.SELL}
department_scope: set[str] = set()
for settings in app_cfg.departments.values():
department_scope.update(settings.data_scope)
base_scope = {
"daily.close",
"daily.open",
"daily.high",
"daily.low",
"daily.pct_chg",
"daily.vol",
"daily.amount",
"daily_basic.turnover_rate",
"daily_basic.turnover_rate_f",
"daily_basic.volume_ratio",
"stk_limit.up_limit",
"stk_limit.down_limit",
"factors.mom_20",
"factors.mom_60",
"factors.volat_20",
"factors.turn_20",
}
selected_structures = (
cfg.game_structures
if cfg.game_structures
else [
GameStructure.REPEATED,
GameStructure.SIGNALING,
GameStructure.BAYESIAN,
GameStructure.CUSTOM,
]
)
self.game_structures = list(dict.fromkeys(selected_structures))
structure_scope = scope_for_structures(self.game_structures)
self.required_fields = sorted(base_scope | department_scope | structure_scope)
def load_market_data(self, trade_date: date) -> Mapping[str, Dict[str, Any]]:
"""Load per-stock feature vectors and context slices for the trade date."""
trade_date_str = trade_date.strftime("%Y%m%d")
feature_map: Dict[str, Dict[str, Any]] = {}
universe = self.cfg.universe or []
snapshot_service = FeatureSnapshotService(self.data_broker)
batch_latest = snapshot_service.load_latest(
trade_date_str,
self.required_fields,
universe,
auto_refresh=False,
)
for ts_code in universe:
scope_values = dict(batch_latest.get(ts_code) or {})
missing_fields = [
field
for field in self.required_fields
if scope_values.get(field) is None
]
if missing_fields:
fallback = self.data_broker.fetch_latest(
ts_code,
trade_date_str,
missing_fields,
auto_refresh=False,
)
scope_values.update({k: v for k, v in fallback.items() if v is not None})
missing_fields = [
field
for field in self.required_fields
if scope_values.get(field) is None
]
derived_fields: List[str] = []
if missing_fields:
LOGGER.debug(
"字段缺失,使用回退或派生数据 ts_code=%s fields=%s",
ts_code,
missing_fields,
extra=LOG_EXTRA,
)
closes = self.data_broker.fetch_series(
"daily",
"close",
ts_code,
trade_date_str,
window=60,
auto_refresh=False, # 避免在回测中触发自动补数
)
close_values = [value for _date, value in closes if value is not None]
mom5 = scope_values.get("factors.mom_5")
if mom5 is None and len(close_values) >= 5:
mom5 = momentum(close_values, 5)
derived_fields.append("factors.mom_5")
mom20 = scope_values.get("factors.mom_20")
if mom20 is None and len(close_values) >= 20:
mom20 = momentum(close_values, 20)
derived_fields.append("factors.mom_20")
mom60 = scope_values.get("factors.mom_60")
if mom60 is None and len(close_values) >= 60:
mom60 = momentum(close_values, 60)
derived_fields.append("factors.mom_60")
volat20 = scope_values.get("factors.volat_20")
if volat20 is None and len(close_values) >= 2:
volat20 = volatility(close_values, 20)
derived_fields.append("factors.volat_20")
turnover_series = self.data_broker.fetch_series(
"daily_basic",
"turnover_rate",
ts_code,
trade_date_str,
window=20,
auto_refresh=False, # 避免在回测中触发自动补数
)
turnover_values = [value for _date, value in turnover_series if value is not None]
turn20 = scope_values.get("factors.turn_20")
if turn20 is None and turnover_values:
turn20 = rolling_mean(turnover_values, 20)
derived_fields.append("factors.turn_20")
turn5 = scope_values.get("factors.turn_5")
if turn5 is None and len(turnover_values) >= 5:
turn5 = rolling_mean(turnover_values, 5)
derived_fields.append("factors.turn_5")
if mom20 is None:
mom20 = 0.0
if mom60 is None:
mom60 = 0.0
if volat20 is None:
volat20 = 0.0
if turn20 is None:
turn20 = 0.0
if mom5 is None:
mom5 = 0.0
if turn5 is None:
turn5 = 0.0
liquidity_score = normalize(turn20, factor=20.0)
cost_penalty = normalize(
scope_values.get("daily_basic.volume_ratio", 0.0),
factor=50.0,
)
val_pe = scope_values.get("factors.val_pe_score")
if val_pe is None:
val_pe = _valuation_score(scope_values.get("daily_basic.pe"), scale=12.0)
derived_fields.append("factors.val_pe_score")
val_pb = scope_values.get("factors.val_pb_score")
if val_pb is None:
val_pb = _valuation_score(scope_values.get("daily_basic.pb"), scale=2.5)
derived_fields.append("factors.val_pb_score")
volume_ratio_score = scope_values.get("factors.volume_ratio_score")
if volume_ratio_score is None:
volume_ratio_score = _volume_ratio_score(scope_values.get("daily_basic.volume_ratio"))
derived_fields.append("factors.volume_ratio_score")
if derived_fields:
LOGGER.debug(
"字段派生完成 ts_code=%s derived=%s",
ts_code,
derived_fields,
extra=LOG_EXTRA,
)
sentiment_index = scope_values.get("news.sentiment_index", 0.0)
heat_score = scope_values.get("news.heat_score", 0.0)
scope_values.setdefault("news.sentiment_index", sentiment_index)
scope_values.setdefault("news.heat_score", heat_score)
scope_values.setdefault("factors.mom_5", mom5)
scope_values.setdefault("factors.mom_20", mom20)
scope_values.setdefault("factors.mom_60", mom60)
scope_values.setdefault("factors.volat_20", volat20)
scope_values.setdefault("factors.turn_20", turn20)
scope_values.setdefault("factors.turn_5", turn5)
scope_values.setdefault("factors.val_pe_score", val_pe)
scope_values.setdefault("factors.val_pb_score", val_pb)
scope_values.setdefault("factors.volume_ratio_score", volume_ratio_score)
if scope_values.get("macro.industry_heat") is None:
scope_values["macro.industry_heat"] = 0.5
if scope_values.get("macro.relative_strength") is None:
peer_strength = scope_values.get("index.performance_peers")
if peer_strength is None:
peer_strength = 0.5
scope_values["macro.relative_strength"] = peer_strength
scope_values.setdefault(
"index.performance_peers",
scope_values.get("macro.relative_strength", 0.5),
)
latest_close = scope_values.get("daily.close", 0.0)
latest_pct = scope_values.get("daily.pct_chg", 0.0)
latest_turnover = scope_values.get("daily_basic.turnover_rate", 0.0)
up_limit = scope_values.get("stk_limit.up_limit")
limit_up = False
if up_limit and latest_close:
limit_up = latest_close >= up_limit * 0.999
down_limit = scope_values.get("stk_limit.down_limit")
limit_down = False
if down_limit and latest_close:
limit_down = latest_close <= down_limit * 1.001
is_suspended = self.data_broker.fetch_flags(
"suspend",
ts_code,
trade_date_str,
"",
[],
auto_refresh=False, # 避免在回测中触发自动补数
)
features = {
"mom_5": mom5,
"mom_20": mom20,
"mom_60": mom60,
"volat_20": volat20,
"turn_20": turn20,
"turn_5": turn5,
"liquidity_score": liquidity_score,
"cost_penalty": cost_penalty,
"news_heat": heat_score,
"news_sentiment": sentiment_index,
"industry_heat": scope_values.get("macro.industry_heat", 0.0),
"industry_relative_mom": scope_values.get(
"macro.relative_strength",
scope_values.get("index.performance_peers", 0.0),
),
"risk_penalty": min(1.0, volat20 * 5.0),
"valuation_pe_score": val_pe,
"valuation_pb_score": val_pb,
"volume_ratio_score": volume_ratio_score,
"is_suspended": is_suspended,
"limit_up": limit_up,
"limit_down": limit_down,
"position_limit": False,
}
market_snapshot = {
"close": latest_close,
"pct_chg": latest_pct,
"turnover_rate": latest_turnover,
"volume": scope_values.get("daily.vol", 0.0),
"amount": scope_values.get("daily.amount", 0.0),
"up_limit": up_limit,
"down_limit": down_limit,
}
raw_payload = {
"scope_values": scope_values,
"close_series": closes,
"turnover_series": turnover_series,
"required_fields": self.required_fields,
"missing_fields": missing_fields,
"derived_fields": derived_fields,
}
feature_map[ts_code] = {
"features": features,
"market_snapshot": market_snapshot,
"raw": raw_payload,
}
return feature_map
def simulate_day(
self,
trade_date: date,
state: PortfolioState,
decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None,
) -> List[tuple[str, AgentContext, Decision]]:
feature_map = self.load_market_data(trade_date)
records: List[tuple[str, AgentContext, Decision]] = []
for ts_code, payload in feature_map.items():
features = payload.get("features", {})
market_snapshot = payload.get("market_snapshot", {})
raw = payload.get("raw", {})
context = AgentContext(
ts_code=ts_code,
trade_date=trade_date.isoformat(),
features=features,
market_snapshot=market_snapshot,
raw=raw,
)
decision = decide(
context,
self.agents,
self.weights,
method=self.cfg.method,
department_manager=self.department_manager,
)
try:
metrics_record_decision(
ts_code=ts_code,
trade_date=context.trade_date,
action=decision.action.value,
confidence=decision.confidence,
summary=_extract_summary(decision),
source="backtest",
departments={
code: dept.to_dict()
for code, dept in decision.department_decisions.items()
},
)
except Exception: # noqa: BLE001
LOGGER.debug("记录决策指标失败", extra=LOG_EXTRA)
records.append((ts_code, context, decision))
self.record_agent_state(context, decision)
if decision_callback:
try:
decision_callback(ts_code, trade_date, context, decision)
except Exception: # noqa: BLE001
LOGGER.exception("决策回调执行失败", extra=LOG_EXTRA)
return records
def record_agent_state(self, context: AgentContext, decision: Decision) -> None:
payload = {
"trade_date": context.trade_date,
"ts_code": context.ts_code,
"action": decision.action.value,
"confidence": decision.confidence,
"department_votes": decision.department_votes,
"requires_review": decision.requires_review,
"departments": {
code: dept.to_dict()
for code, dept in decision.department_decisions.items()
},
}
combined_weights = dict(self.weights)
if self.department_manager:
for code, agent in self.department_manager.agents.items():
key = f"dept_{code}"
combined_weights[key] = agent.settings.weight
feasible_json = json.dumps(
[action.value for action in decision.feasible_actions],
ensure_ascii=False,
)
rows = []
for agent_name, weight in combined_weights.items():
action_scores = {
action.value: float(decision.utilities.get(action, {}).get(agent_name, 0.0))
for action in decision.utilities.keys()
}
best_action = decision.action.value
if action_scores:
best_action = max(action_scores.items(), key=lambda item: item[1])[0]
metadata: Dict[str, object] = {}
if agent_name.startswith("dept_"):
dept_code = agent_name.split("dept_", 1)[-1]
dept_decision = decision.department_decisions.get(dept_code)
if dept_decision:
metadata = {
"_summary": dept_decision.summary,
"_signals": dept_decision.signals,
"_risks": dept_decision.risks,
"_confidence": dept_decision.confidence,
}
if dept_decision.supplements:
metadata["_supplements"] = dept_decision.supplements
if dept_decision.dialogue:
metadata["_dialogue"] = dept_decision.dialogue
if dept_decision.telemetry:
metadata["_telemetry"] = dept_decision.telemetry
payload_json = {**action_scores, **metadata}
rows.append(
(
context.trade_date,
context.ts_code,
agent_name,
best_action,
json.dumps(payload_json, ensure_ascii=False),
feasible_json,
float(weight),
)
)
round_payload = [round_to_dict(summary) for summary in decision.rounds]
global_payload = {
"_confidence": decision.confidence,
"_target_weight": decision.target_weight,
"_department_votes": decision.department_votes,
"_requires_review": decision.requires_review,
"_scope_values": context.raw.get("scope_values", {}),
"_close_series": context.raw.get("close_series", []),
"_turnover_series": context.raw.get("turnover_series", []),
"_department_supplements": {
code: dept.supplements
for code, dept in decision.department_decisions.items()
if dept.supplements
},
"_department_dialogue": {
code: dept.dialogue
for code, dept in decision.department_decisions.items()
if dept.dialogue
},
"_department_telemetry": {
code: dept.telemetry
for code, dept in decision.department_decisions.items()
if dept.telemetry
},
"_rounds": round_payload,
"_risk_assessment": (
decision.risk_assessment.to_dict()
if decision.risk_assessment
else None
),
}
rows.append(
(
context.trade_date,
context.ts_code,
"global",
decision.action.value,
json.dumps(global_payload, ensure_ascii=False),
feasible_json,
1.0,
)
)
try:
with db_session() as conn:
conn.executemany(
"""
INSERT OR REPLACE INTO agent_utils
(trade_date, ts_code, agent, action, utils, feasible, weight)
VALUES (?, ?, ?, ?, ?, ?, ?)
""",
rows,
)
except Exception:
LOGGER.exception("写入 agent_utils 失败", extra=LOG_EXTRA)
_ = payload
# TODO: persist payload into bt_trades / audit tables when schema is ready.
try:
self._record_investment_candidate(context, decision)
except Exception: # noqa: BLE001
LOGGER.exception("写入 investment_pool 失败", extra=LOG_EXTRA)
def _apply_portfolio_updates(
self,
trade_date: date,
state: PortfolioState,
records: List[tuple[str, AgentContext, Decision]],
result: BacktestResult,
) -> None:
trade_date_str = trade_date.isoformat()
price_map: Dict[str, float] = {}
decisions_map: Dict[str, Decision] = {}
feature_cache: Dict[str, Mapping[str, Any]] = {}
missing_counts: Dict[str, int] = defaultdict(int)
derived_counts: Dict[str, int] = defaultdict(int)
for ts_code, context, decision in records:
features = context.features or {}
if not isinstance(features, Mapping):
features = {}
feature_cache[ts_code] = features
scope_values = context.raw.get("scope_values") if context.raw else {}
if not isinstance(scope_values, Mapping):
scope_values = {}
raw_missing = context.raw.get("missing_fields") if context.raw else []
raw_derived = context.raw.get("derived_fields") if context.raw else []
for field in raw_missing or []:
missing_counts[field] += 1
for field in raw_derived or []:
derived_counts[field] += 1
price = scope_values.get("daily.close") or scope_values.get("close")
if price is None:
continue
try:
price = float(price)
except (TypeError, ValueError):
continue
price_map[ts_code] = price
decisions_map[ts_code] = decision
if not price_map and state.holdings:
trade_date_compact = trade_date.strftime("%Y%m%d")
for ts_code in list(state.holdings.keys()):
fetched = self.data_broker.fetch_latest(ts_code, trade_date_compact, ["daily.close"], auto_refresh=False)
price = fetched.get("daily.close")
if price:
price_map[ts_code] = float(price)
portfolio_value_before = state.cash
for ts_code, qty in state.holdings.items():
price = price_map.get(ts_code)
if price is None:
continue
portfolio_value_before += qty * price
if portfolio_value_before <= 0:
portfolio_value_before = state.cash or 1.0
daily_turnover = 0.0
executed_trades: List[Dict[str, Any]] = []
risk_events: List[Dict[str, Any]] = []
def _record_risk(
ts_code: str,
reason: str,
decision: Decision,
extra: Optional[Dict[str, Any]] = None,
action_override: Optional[AgentAction] = None,
target_weight_override: Optional[float] = None,
) -> None:
payload = {
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": (action_override or decision.action).value,
"target_weight": (
target_weight_override
if target_weight_override is not None
else decision.target_weight
),
"confidence": decision.confidence,
"reason": reason,
}
if extra:
payload.update(extra)
risk_events.append(payload)
risk_meta = payload.get("risk_assessment") if isinstance(payload.get("risk_assessment"), dict) else extra.get("risk_assessment") if extra else None
status = None
if isinstance(risk_meta, dict):
status = risk_meta.get("status")
if status == "blocked":
try:
alerts.add_warning(
"backtest_risk",
f"{ts_code} 风险阻断: {reason}",
detail=json.dumps(payload, ensure_ascii=False),
)
except Exception: # noqa: BLE001
LOGGER.debug("记录风险告警失败", extra=LOG_EXTRA)
for ts_code, decision in decisions_map.items():
price = price_map.get(ts_code)
if price is None or price <= 0:
continue
features = feature_cache.get(ts_code, {})
current_qty = state.holdings.get(ts_code, 0.0)
current_cost_basis = float(state.cost_basis.get(ts_code, 0.0) or 0.0)
liquidity_score = float(features.get("liquidity_score") or 0.0)
risk_penalty = float(features.get("risk_penalty") or 0.0)
is_suspended = bool(features.get("is_suspended"))
limit_up = bool(features.get("limit_up"))
limit_down = bool(features.get("limit_down"))
position_limit = bool(features.get("position_limit"))
risk = decision.risk_assessment
effective_action = decision.action
effective_weight = decision.target_weight
if risk:
risk_payload = risk.to_dict()
risk_payload.setdefault("applied_action", effective_action.value)
if risk.recommended_action:
effective_action = risk.recommended_action
risk_payload["applied_action"] = effective_action.value
effective_weight = target_weight_for_action(effective_action)
if risk.status != "ok":
_record_risk(
ts_code,
risk.reason,
decision,
extra={"risk_assessment": risk_payload},
action_override=effective_action,
target_weight_override=effective_weight,
)
if risk.status == "blocked":
continue
rule_override_action: Optional[AgentAction] = None
rule_override_reason: Optional[str] = None
gain_ratio: Optional[float] = None
if current_qty > 0 and current_cost_basis:
try:
gain_ratio = (price / current_cost_basis) - 1.0
except ZeroDivisionError:
gain_ratio = None
target_return = self.trading_rules.get("target_return", 0.0)
if (
rule_override_action is None
and gain_ratio is not None
and target_return
and gain_ratio >= target_return
):
rule_override_action = AgentAction.SELL
rule_override_reason = "target_reached"
stop_loss = self.trading_rules.get("stop_loss", 0.0)
if (
rule_override_action is None
and gain_ratio is not None
and stop_loss
and gain_ratio <= stop_loss
):
rule_override_action = AgentAction.SELL
rule_override_reason = "stop_loss"
max_hold_days = self.trading_rules.get("max_hold_days", 0)
if (
rule_override_action is None
and max_hold_days
and max_hold_days > 0
and current_qty > 0
):
opened_str = state.opened_dates.get(ts_code)
opened_dt: Optional[date] = None
if opened_str:
try:
opened_dt = date.fromisoformat(str(opened_str))
except ValueError:
try:
opened_dt = datetime.strptime(str(opened_str), "%Y%m%d").date()
except ValueError:
opened_dt = None
LOGGER.debug(
"无法解析持仓日期 ts_code=%s value=%s",
ts_code,
opened_str,
extra=LOG_EXTRA,
)
if opened_dt:
holding_days = (trade_date - opened_dt).days
if holding_days >= max_hold_days:
rule_override_action = AgentAction.SELL
rule_override_reason = "holding_period"
if rule_override_action and rule_override_action is not effective_action:
effective_action = rule_override_action
effective_weight = target_weight_for_action(effective_action)
_record_risk(
ts_code,
rule_override_reason or "rule_override",
decision,
extra={
"rule_trigger": rule_override_reason,
"gain_ratio": gain_ratio,
},
action_override=effective_action,
target_weight_override=effective_weight,
)
if is_suspended:
_record_risk(ts_code, "suspended", decision)
continue
if effective_action in self._buy_actions:
if limit_up:
_record_risk(ts_code, "limit_up", decision, action_override=effective_action)
continue
if position_limit:
_record_risk(ts_code, "position_limit", decision, action_override=effective_action)
continue
if effective_action in self._sell_actions and limit_down:
_record_risk(ts_code, "limit_down", decision, action_override=effective_action)
continue
effective_weight_value = max(effective_weight, 0.0)
if effective_action in self._buy_actions:
capped_weight = min(effective_weight, self.risk_params["max_position_weight"])
effective_weight_value = capped_weight * max(0.0, 1.0 - risk_penalty)
elif effective_action in self._sell_actions:
effective_weight_value = 0.0
desired_qty = current_qty
if effective_action in self._sell_actions:
desired_qty = 0.0
elif effective_action in self._buy_actions or effective_weight_value > 0.0:
desired_value = max(effective_weight_value, 0.0) * portfolio_value_before
desired_qty = desired_value / price if price > 0 else current_qty
delta = desired_qty - current_qty
if abs(delta) < 1e-6:
continue
if delta > 0 and self._turnover_cap > 0:
liquidity_scalar = max(liquidity_score, 0.1)
max_trade_value = self._turnover_cap * portfolio_value_before * liquidity_scalar
if max_trade_value > 0 and delta * price > max_trade_value:
delta = max_trade_value / price
desired_qty = current_qty + delta
if delta > 0:
trade_price = price * (1.0 + self._slippage_rate)
per_share_cost = trade_price * (1.0 + self._fee_rate)
if per_share_cost <= 0:
_record_risk(ts_code, "invalid_price", decision)
continue
max_affordable = state.cash / per_share_cost if per_share_cost > 0 else 0.0
if delta > max_affordable:
if max_affordable <= 1e-6:
_record_risk(ts_code, "insufficient_cash", decision)
continue
delta = max_affordable
desired_qty = current_qty + delta
trade_value = delta * trade_price
fee = trade_value * self._fee_rate
total_cash_needed = trade_value + fee
if total_cash_needed <= 0:
_record_risk(ts_code, "invalid_trade", decision)
continue
previous_cost = current_cost_basis * current_qty
new_qty = current_qty + delta
state.cost_basis[ts_code] = (
(previous_cost + trade_value + fee) / new_qty if new_qty > 0 else 0.0
)
state.cash -= total_cash_needed
state.holdings[ts_code] = new_qty
state.opened_dates.setdefault(ts_code, trade_date_str)
daily_turnover += trade_value
executed_trades.append(
{
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": "buy",
"quantity": float(delta),
"price": trade_price,
"base_price": price,
"value": trade_value,
"fee": fee,
"slippage": trade_price - price,
"confidence": decision.confidence,
"target_weight": decision.target_weight,
"effective_weight": effective_weight_value,
"effective_action": effective_action.value,
"risk_penalty": risk_penalty,
"liquidity_score": liquidity_score,
"status": "executed",
}
)
else:
sell_qty = min(abs(delta), current_qty)
if sell_qty <= 1e-6:
continue
trade_price = price * (1.0 - self._slippage_rate)
trade_price = max(trade_price, 0.0)
gross_value = sell_qty * trade_price
fee = gross_value * self._fee_rate
proceeds = gross_value - fee
realized = (trade_price - current_cost_basis) * sell_qty - fee
state.cash += proceeds
state.realized_pnl += realized
new_qty = current_qty - sell_qty
if new_qty <= 1e-6:
state.holdings.pop(ts_code, None)
state.cost_basis.pop(ts_code, None)
state.opened_dates.pop(ts_code, None)
else:
state.holdings[ts_code] = new_qty
daily_turnover += gross_value
executed_trades.append(
{
"trade_date": trade_date_str,
"ts_code": ts_code,
"action": "sell",
"quantity": float(sell_qty),
"price": trade_price,
"base_price": price,
"value": gross_value,
"fee": fee,
"slippage": price - trade_price,
"confidence": decision.confidence,
"target_weight": decision.target_weight,
"effective_weight": effective_weight_value,
"effective_action": effective_action.value,
"risk_penalty": risk_penalty,
"liquidity_score": liquidity_score,
"realized_pnl": realized,
"status": "executed",
}
)
if missing_counts or derived_counts:
result.data_gaps.append(
{
"trade_date": trade_date_str,
"missing_fields": dict(sorted(missing_counts.items())),
"derived_fields": dict(sorted(derived_counts.items())),
}
)
market_value = 0.0
unrealized_pnl = 0.0
for ts_code, qty in state.holdings.items():
price = price_map.get(ts_code)
if price is None:
continue
market_value += qty * price
cost_basis = state.cost_basis.get(ts_code, 0.0)
unrealized_pnl += (price - cost_basis) * qty
nav = state.cash + market_value
turnover_ratio = daily_turnover / nav if nav else 0.0
result.nav_series.append(
{
"trade_date": trade_date_str,
"nav": nav,
"cash": state.cash,
"market_value": market_value,
"realized_pnl": state.realized_pnl,
"unrealized_pnl": unrealized_pnl,
"turnover": daily_turnover,
"turnover_ratio": turnover_ratio,
}
)
if executed_trades:
result.trades.extend(executed_trades)
if risk_events:
result.risk_events.extend(risk_events)
try:
self._persist_portfolio(
trade_date_str,
state,
market_value,
unrealized_pnl,
executed_trades,
price_map,
decisions_map,
daily_turnover,
)
except Exception: # noqa: BLE001
LOGGER.exception("持仓数据写入失败", extra=LOG_EXTRA)
def _record_investment_candidate(
self, context: AgentContext, decision: Decision
) -> None:
status = _candidate_status(decision.action, decision.requires_review)
summary = _extract_summary(decision)
if not summary:
collected_signals: List[str] = []
for dept in decision.department_decisions.values():
collected_signals.extend(dept.signals)
summary = "".join(str(sig) for sig in collected_signals[:3])
metadata = {
"target_weight": decision.target_weight,
"feasible_actions": [action.value for action in decision.feasible_actions],
"department_votes": decision.department_votes,
"requires_review": decision.requires_review,
"confidence": decision.confidence,
}
if decision.department_decisions:
metadata["departments"] = {
code: dept.to_dict()
for code, dept in decision.department_decisions.items()
}
stock_info = self.data_broker.get_stock_info(context.ts_code, context.trade_date)
name = stock_info.get("name") if stock_info else None
industry = stock_info.get("industry") if stock_info else None
with db_session() as conn:
self._ensure_investment_pool_columns(conn)
conn.execute(
"""
INSERT OR REPLACE INTO investment_pool
(trade_date, ts_code, score, status, rationale, tags, metadata, name, industry)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
context.trade_date,
context.ts_code,
float(decision.confidence or 0.0),
status,
summary or None,
json.dumps(_department_tags(decision), ensure_ascii=False),
json.dumps(metadata, ensure_ascii=False),
name,
industry,
),
)
@staticmethod
def _ensure_investment_pool_columns(conn: sqlite3.Connection) -> None:
try:
info = conn.execute("PRAGMA table_info(investment_pool)").fetchall()
except sqlite3.Error:
return
columns = {
(row[1] if not isinstance(row, sqlite3.Row) else row["name"])
for row in info
if row is not None
}
if "name" not in columns:
try:
conn.execute("ALTER TABLE investment_pool ADD COLUMN name TEXT")
except sqlite3.Error:
pass
if "industry" not in columns:
try:
conn.execute("ALTER TABLE investment_pool ADD COLUMN industry TEXT")
except sqlite3.Error:
pass
if "created_at" not in columns:
try:
conn.execute(
"ALTER TABLE investment_pool ADD COLUMN created_at TEXT DEFAULT (strftime('%Y-%m-%dT%H:%M:%fZ','now'))"
)
except sqlite3.Error:
try:
conn.execute("ALTER TABLE investment_pool ADD COLUMN created_at TEXT")
except sqlite3.Error:
pass
def _persist_portfolio(
self,
trade_date: str,
state: PortfolioState,
market_value: float,
unrealized_pnl: float,
trades: List[Dict[str, Any]],
price_map: Dict[str, float],
decisions_map: Dict[str, Decision],
daily_turnover: float,
) -> None:
holdings_rows: List[tuple] = []
for ts_code, qty in state.holdings.items():
price = price_map.get(ts_code)
market_val = qty * price if price is not None else None
cost_basis = state.cost_basis.get(ts_code, 0.0)
unrealized = (price - cost_basis) * qty if price is not None else None
decision = decisions_map.get(ts_code)
target_weight = decision.target_weight if decision else None
metadata = {
"last_action": decision.action.value if decision else None,
"confidence": decision.confidence if decision else None,
}
holdings_rows.append(
(
ts_code,
state.opened_dates.get(ts_code, trade_date),
None,
qty,
cost_basis,
price,
market_val,
state.realized_pnl,
unrealized,
target_weight,
"open",
None,
json.dumps(metadata, ensure_ascii=False),
)
)
total_value = market_value + state.cash
turnover_ratio = daily_turnover / total_value if total_value else 0.0
snapshot_metadata = {
"holdings": len(state.holdings),
"turnover_value": daily_turnover,
"turnover_ratio": turnover_ratio,
"trade_count": len(trades),
}
exposure = (market_value / total_value) if total_value else 0.0
net_flow = 0.0
for trade in trades:
value = float(trade.get("value", 0.0) or 0.0)
fee = float(trade.get("fee", 0.0) or 0.0)
action = str(trade.get("action", "")).lower()
if action.startswith("buy"):
net_flow -= value + fee
elif action.startswith("sell"):
net_flow += value - fee
with db_session() as conn:
conn.execute(
"""
INSERT OR REPLACE INTO portfolio_snapshots
(trade_date, total_value, cash, invested_value, unrealized_pnl, realized_pnl, net_flow, exposure, notes, metadata)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
trade_date,
market_value + state.cash,
state.cash,
market_value,
unrealized_pnl,
state.realized_pnl,
net_flow,
exposure,
None,
json.dumps(snapshot_metadata, ensure_ascii=False),
),
)
conn.execute("DELETE FROM portfolio_positions")
if holdings_rows:
conn.executemany(
"""
INSERT INTO portfolio_positions
(ts_code, opened_date, closed_date, quantity, cost_price, market_price, market_value, realized_pnl, unrealized_pnl, target_weight, status, notes, metadata)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
holdings_rows,
)
if trades:
conn.executemany(
"""
INSERT INTO portfolio_trades
(trade_date, ts_code, action, quantity, price, fee, order_id, source, notes, metadata)
VALUES (?, ?, ?, ?, ?, ?, NULL, 'backtest', NULL, ?)
""",
[
(
trade["trade_date"],
trade["ts_code"],
trade["action"],
trade["quantity"],
trade["price"],
trade.get("fee", 0.0),
json.dumps(trade, ensure_ascii=False),
)
for trade in trades
],
)
def start_session(self) -> BacktestSession:
"""Initialise a new incremental backtest session."""
return BacktestSession(
state=PortfolioState(cash=self.initial_cash),
result=BacktestResult(),
current_date=self.cfg.start_date,
)
def step_session(
self,
session: BacktestSession,
decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None,
) -> Tuple[Iterable[Dict[str, Any]], bool]:
"""Advance the session by a single trade date.
Returns ``(records, done)`` where ``records`` is the raw output of
:meth:`simulate_day` and ``done`` indicates whether the session
reached the end date after this step.
"""
if session.current_date > self.cfg.end_date:
return [], True
trade_date = session.current_date
records = self.simulate_day(trade_date, session.state, decision_callback)
self._apply_portfolio_updates(trade_date, session.state, records, session.result)
session.current_date = date.fromordinal(trade_date.toordinal() + 1)
done = session.current_date > self.cfg.end_date
return records, done
def run(
self,
decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None,
) -> BacktestResult:
session = self.start_session()
if session.current_date > self.cfg.end_date:
return session.result
while session.current_date <= self.cfg.end_date:
self.step_session(session, decision_callback)
return session.result
def run_backtest(
cfg: BtConfig,
*,
decision_callback: Optional[Callable[[str, date, AgentContext, Decision], None]] = None,
) -> BacktestResult:
engine = BacktestEngine(cfg)
result = engine.run(decision_callback=decision_callback)
_persist_backtest_results(cfg, result)
return result
def _persist_backtest_results(cfg: BtConfig, result: BacktestResult) -> None:
"""Persist backtest configuration, NAV path, trades and summary metrics."""
nav_rows: List[tuple] = []
trade_rows: List[tuple] = []
risk_rows: List[tuple] = []
summary_payload: Dict[str, object] = {}
turnover_sum = 0.0
if result.nav_series:
first_nav = float(result.nav_series[0].get("nav", 0.0) or 0.0)
peak_nav = first_nav
prev_nav: Optional[float] = None
max_drawdown = 0.0
for entry in result.nav_series:
trade_date = str(entry.get("trade_date", ""))
nav_val = float(entry.get("nav", 0.0) or 0.0)
cash = float(entry.get("cash", 0.0) or 0.0)
market_value = float(entry.get("market_value", 0.0) or 0.0)
realized = float(entry.get("realized_pnl", 0.0) or 0.0)
unrealized = float(entry.get("unrealized_pnl", 0.0) or 0.0)
turnover = float(entry.get("turnover", 0.0) or 0.0)
if nav_val > peak_nav:
peak_nav = nav_val
drawdown = (peak_nav - nav_val) / peak_nav if peak_nav else 0.0
max_drawdown = max(max_drawdown, drawdown)
if prev_nav is None or prev_nav == 0.0:
ret_val = 0.0
else:
ret_val = (nav_val / prev_nav) - 1.0
prev_nav = nav_val
info_payload = {
"cash": cash,
"market_value": market_value,
"realized_pnl": realized,
"unrealized_pnl": unrealized,
"turnover": turnover,
}
turnover_sum += turnover
nav_rows.append(
(
cfg.id,
trade_date,
nav_val,
float(ret_val),
None,
None,
float(drawdown),
json.dumps(info_payload, ensure_ascii=False),
)
)
last_nav = float(result.nav_series[-1].get("nav", 0.0) or 0.0)
total_return = (last_nav / first_nav - 1.0) if first_nav else 0.0
summary_payload.update(
{
"start_nav": first_nav,
"end_nav": last_nav,
"total_return": total_return,
"max_drawdown": max_drawdown,
"days": len(result.nav_series),
}
)
if turnover_sum:
summary_payload["total_turnover"] = turnover_sum
summary_payload["avg_turnover"] = turnover_sum / max(len(result.nav_series), 1)
if result.trades:
for trade in result.trades:
trade_date = str(trade.get("trade_date", ""))
ts_code = str(trade.get("ts_code", ""))
side = str(trade.get("action", "")).lower()
price = float(trade.get("price", 0.0) or 0.0)
qty = float(trade.get("quantity", 0.0) or 0.0)
reason_payload = {
"confidence": trade.get("confidence"),
"target_weight": trade.get("target_weight"),
"value": trade.get("value"),
"fee": trade.get("fee"),
"slippage": trade.get("slippage"),
"risk_penalty": trade.get("risk_penalty"),
"liquidity_score": trade.get("liquidity_score"),
}
trade_rows.append(
(
cfg.id,
ts_code,
trade_date,
side,
price,
qty,
json.dumps(reason_payload, ensure_ascii=False),
)
)
summary_payload["trade_count"] = len(trade_rows)
if result.risk_events:
summary_payload["risk_events"] = len(result.risk_events)
breakdown: Dict[str, int] = {}
for event in result.risk_events:
reason = str(event.get("reason") or "unknown")
breakdown[reason] = breakdown.get(reason, 0) + 1
risk_rows.append(
(
cfg.id,
str(event.get("trade_date", "")),
str(event.get("ts_code", "")),
reason,
str(event.get("action", "")),
float(event.get("target_weight", 0.0) or 0.0),
float(event.get("confidence", 0.0) or 0.0),
json.dumps(event, ensure_ascii=False),
)
)
summary_payload["risk_breakdown"] = breakdown
if getattr(result, "data_gaps", None):
missing_total: Dict[str, int] = defaultdict(int)
derived_total: Dict[str, int] = defaultdict(int)
for gap in result.data_gaps:
for field, count in (gap.get("missing_fields") or {}).items():
missing_total[field] += int(count)
for field, count in (gap.get("derived_fields") or {}).items():
derived_total[field] += int(count)
if missing_total:
summary_payload["missing_field_counts"] = dict(missing_total)
if derived_total:
summary_payload["derived_field_counts"] = dict(derived_total)
cfg_payload = {
"id": cfg.id,
"name": cfg.name,
"start_date": cfg.start_date.isoformat(),
"end_date": cfg.end_date.isoformat(),
"universe": cfg.universe,
"params": cfg.params,
"method": cfg.method,
}
with db_session() as conn:
conn.execute(
"""
INSERT OR REPLACE INTO bt_config (id, name, start_date, end_date, universe, params)
VALUES (?, ?, ?, ?, ?, ?)
""",
(
cfg.id,
cfg.name,
cfg.start_date.isoformat(),
cfg.end_date.isoformat(),
",".join(cfg.universe),
json.dumps(cfg.params, ensure_ascii=False),
),
)
conn.execute("DELETE FROM bt_nav WHERE cfg_id = ?", (cfg.id,))
conn.execute("DELETE FROM bt_trades WHERE cfg_id = ?", (cfg.id,))
conn.execute("DELETE FROM bt_risk_events WHERE cfg_id = ?", (cfg.id,))
conn.execute("DELETE FROM bt_report WHERE cfg_id = ?", (cfg.id,))
if nav_rows:
conn.executemany(
"""
INSERT INTO bt_nav (cfg_id, trade_date, nav, ret, pos_count, turnover, dd, info)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
""",
nav_rows,
)
if trade_rows:
conn.executemany(
"""
INSERT INTO bt_trades (cfg_id, ts_code, trade_date, side, price, qty, reason)
VALUES (?, ?, ?, ?, ?, ?, ?)
""",
trade_rows,
)
if risk_rows:
conn.executemany(
"""
INSERT INTO bt_risk_events (cfg_id, trade_date, ts_code, reason, action, target_weight, confidence, metadata)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
""",
risk_rows,
)
summary_payload.setdefault("universe", cfg.universe)
summary_payload.setdefault("method", cfg.method)
conn.execute(
"""
INSERT OR REPLACE INTO bt_report (cfg_id, summary)
VALUES (?, ?)
""",
(cfg.id, json.dumps(summary_payload, ensure_ascii=False, default=str)),
)
def _candidate_status(action: AgentAction, requires_review: bool) -> str:
mapping = {
AgentAction.SELL: "exit",
AgentAction.HOLD: "watch",
AgentAction.BUY_S: "buy_s",
AgentAction.BUY_M: "buy_m",
AgentAction.BUY_L: "buy_l",
}
base = mapping.get(action, "candidate")
if requires_review:
return f"{base}_review"
return base
def _extract_summary(decision: Decision) -> str:
for dept_decision in decision.department_decisions.values():
summary = getattr(dept_decision, "summary", "")
if summary:
return str(summary)
return ""
def _department_tags(decision: Decision) -> List[str]:
tags: List[str] = []
for code, dept in decision.department_decisions.items():
action = getattr(dept, "action", None)
if action is None:
continue
tags.append(f"{code}:{action.value}")
return sorted(set(tags))