80 lines
4.4 KiB
Python
80 lines
4.4 KiB
Python
import numpy as np
|
||
import sys
|
||
import os
|
||
|
||
# 添加项目根目录到Python路径
|
||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||
|
||
from app.features.extended_factors import ExtendedFactors
|
||
|
||
def test_micro_factors():
|
||
"""测试微观结构因子的实际取值范围"""
|
||
# 创建因子引擎
|
||
engine = ExtendedFactors()
|
||
|
||
# 测试场景1:持续上涨行情
|
||
print("测试场景1:持续上涨行情")
|
||
close_prices1 = np.array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110], dtype=float)
|
||
volume_prices1 = np.array([1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000], dtype=float)
|
||
result1_tick = engine.compute_factor("micro_tick_direction", close_prices1, volume_prices1)
|
||
result1_imbalance = engine.compute_factor("micro_trade_imbalance", close_prices1, volume_prices1)
|
||
print(f"micro_tick_direction: {result1_tick}")
|
||
print(f"micro_trade_imbalance: {result1_imbalance}")
|
||
|
||
# 测试场景2:持续下跌行情
|
||
print("\n测试场景2:持续下跌行情")
|
||
close_prices2 = np.array([110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100], dtype=float)
|
||
volume_prices2 = np.array([2000, 1900, 1800, 1700, 1600, 1500, 1400, 1300, 1200, 1100, 1000], dtype=float)
|
||
result2_tick = engine.compute_factor("micro_tick_direction", close_prices2, volume_prices2)
|
||
result2_imbalance = engine.compute_factor("micro_trade_imbalance", close_prices2, volume_prices2)
|
||
print(f"micro_tick_direction: {result2_tick}")
|
||
print(f"micro_trade_imbalance: {result2_imbalance}")
|
||
|
||
# 测试场景3:震荡行情
|
||
print("\n测试场景3:震荡行情")
|
||
close_prices3 = np.array([100, 101, 100, 101, 100, 101, 100, 101, 100, 101, 100], dtype=float)
|
||
volume_prices3 = np.array([1000, 1100, 1000, 1100, 1000, 1100, 1000, 1100, 1000, 1100, 1000], dtype=float)
|
||
result3_tick = engine.compute_factor("micro_tick_direction", close_prices3, volume_prices3)
|
||
result3_imbalance = engine.compute_factor("micro_trade_imbalance", close_prices3, volume_prices3)
|
||
print(f"micro_tick_direction: {result3_tick}")
|
||
print(f"micro_trade_imbalance: {result3_imbalance}")
|
||
|
||
# 测试场景4:极端行情 - 大幅波动
|
||
print("\n测试场景4:极端行情 - 大幅波动")
|
||
close_prices4 = np.array([100, 110, 90, 120, 80, 130, 70, 140, 60, 150, 50], dtype=float)
|
||
volume_prices4 = np.array([1000, 2000, 500, 2500, 300, 3000, 200, 3500, 100, 4000, 50], dtype=float)
|
||
result4_tick = engine.compute_factor("micro_tick_direction", close_prices4, volume_prices4)
|
||
result4_imbalance = engine.compute_factor("micro_trade_imbalance", close_prices4, volume_prices4)
|
||
print(f"micro_tick_direction: {result4_tick}")
|
||
print(f"micro_trade_imbalance: {result4_imbalance}")
|
||
|
||
# 测试场景5:极端行情 - 大量小额波动
|
||
print("\n测试场景5:极端行情 - 大量小额波动")
|
||
close_prices5 = np.array([100, 100.1, 99.9, 100.2, 99.8, 100.3, 99.7, 100.4, 99.6, 100.5, 99.5], dtype=float)
|
||
volume_prices5 = np.array([1000, 1100, 900, 1200, 800, 1300, 700, 1400, 600, 1500, 500], dtype=float)
|
||
result5_tick = engine.compute_factor("micro_tick_direction", close_prices5, volume_prices5)
|
||
result5_imbalance = engine.compute_factor("micro_trade_imbalance", close_prices5, volume_prices5)
|
||
print(f"micro_tick_direction: {result5_tick}")
|
||
print(f"micro_trade_imbalance: {result5_imbalance}")
|
||
|
||
# 收集所有结果
|
||
all_tick_results = [result1_tick, result2_tick, result3_tick, result4_tick, result5_tick]
|
||
all_imbalance_results = [result1_imbalance, result2_imbalance, result3_imbalance, result4_imbalance, result5_imbalance]
|
||
|
||
print("\n=== 结果分析 ===")
|
||
print("micro_tick_direction因子结果范围:")
|
||
valid_tick_results = [r for r in all_tick_results if r is not None]
|
||
if valid_tick_results:
|
||
print(f" 最小值: {min(valid_tick_results)}")
|
||
print(f" 最大值: {max(valid_tick_results)}")
|
||
print(f" 平均值: {np.mean(valid_tick_results)}")
|
||
|
||
print("\nmicro_trade_imbalance因子结果范围:")
|
||
valid_imbalance_results = [r for r in all_imbalance_results if r is not None]
|
||
if valid_imbalance_results:
|
||
print(f" 最小值: {min(valid_imbalance_results)}")
|
||
print(f" 最大值: {max(valid_imbalance_results)}")
|
||
print(f" 平均值: {np.mean(valid_imbalance_results)}")
|
||
|
||
if __name__ == "__main__":
|
||
test_micro_factors() |