271 lines
9.6 KiB
Python
271 lines
9.6 KiB
Python
"""Tests for factor computation pipeline."""
|
|
from __future__ import annotations
|
|
|
|
from datetime import date, timedelta
|
|
|
|
import pytest
|
|
|
|
from app.core.indicators import momentum, rolling_mean, volatility
|
|
from app.data.schema import initialize_database
|
|
from app.features.factors import (
|
|
DEFAULT_FACTORS,
|
|
FactorResult,
|
|
FactorSpec,
|
|
compute_factor_range,
|
|
compute_factors,
|
|
_valuation_score,
|
|
_volume_ratio_score,
|
|
)
|
|
from app.utils.config import DataPaths, get_config
|
|
from app.utils.data_access import DataBroker
|
|
from app.utils.db import db_session
|
|
|
|
|
|
@pytest.fixture()
|
|
def isolated_db(tmp_path):
|
|
cfg = get_config()
|
|
original_paths = cfg.data_paths
|
|
tmp_root = tmp_path / "data"
|
|
tmp_root.mkdir(parents=True, exist_ok=True)
|
|
cfg.data_paths = DataPaths(root=tmp_root)
|
|
try:
|
|
yield
|
|
finally:
|
|
cfg.data_paths = original_paths
|
|
|
|
|
|
def _populate_sample_data(ts_code: str, as_of: date) -> None:
|
|
initialize_database()
|
|
with db_session() as conn:
|
|
for offset in range(60):
|
|
current_day = as_of - timedelta(days=offset)
|
|
trade_date = current_day.strftime("%Y%m%d")
|
|
close = 100 + (59 - offset)
|
|
turnover = 5 + 0.1 * (59 - offset)
|
|
conn.execute(
|
|
"""
|
|
INSERT OR REPLACE INTO daily
|
|
(ts_code, trade_date, open, high, low, close, pct_chg, vol, amount)
|
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
ts_code,
|
|
trade_date,
|
|
close,
|
|
close,
|
|
close,
|
|
close,
|
|
0.0,
|
|
1000.0,
|
|
1_000_000.0,
|
|
),
|
|
)
|
|
pe = 10.0 + (offset % 5)
|
|
pb = 1.5 + (offset % 3) * 0.1
|
|
ps = 2.0 + (offset % 4) * 0.1
|
|
volume_ratio = 0.5 + (offset % 4) * 0.5
|
|
conn.execute(
|
|
"""
|
|
INSERT OR REPLACE INTO daily_basic
|
|
(ts_code, trade_date, turnover_rate, turnover_rate_f, volume_ratio, pe, pb, ps)
|
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
ts_code,
|
|
trade_date,
|
|
turnover,
|
|
turnover,
|
|
volume_ratio,
|
|
pe,
|
|
pb,
|
|
ps,
|
|
),
|
|
)
|
|
|
|
|
|
def test_compute_factors_persists_and_updates(isolated_db):
|
|
ts_code = "000001.SZ"
|
|
trade_day = date(2025, 1, 30)
|
|
_populate_sample_data(ts_code, trade_day)
|
|
|
|
specs = [
|
|
*DEFAULT_FACTORS,
|
|
FactorSpec("mom_5", 5),
|
|
FactorSpec("turn_5", 5),
|
|
FactorSpec("val_pe_score", 0),
|
|
FactorSpec("val_pb_score", 0),
|
|
FactorSpec("volume_ratio_score", 0),
|
|
]
|
|
results = compute_factors(trade_day, specs)
|
|
|
|
assert results
|
|
result_map = {result.ts_code: result for result in results}
|
|
assert ts_code in result_map
|
|
result: FactorResult = result_map[ts_code]
|
|
|
|
close_series = [100 + (59 - offset) for offset in range(60)]
|
|
turnover_series = [5 + 0.1 * (59 - offset) for offset in range(60)]
|
|
|
|
expected_mom20 = momentum(close_series, 20)
|
|
expected_mom60 = momentum(close_series, 60)
|
|
expected_mom5 = momentum(close_series, 5)
|
|
expected_volat20 = volatility(close_series, 20)
|
|
expected_turn20 = rolling_mean(turnover_series, 20)
|
|
expected_turn5 = rolling_mean(turnover_series, 5)
|
|
latest_pe = 10.0 + (0 % 5)
|
|
latest_pb = 1.5 + (0 % 3) * 0.1
|
|
latest_volume_ratio = 0.5 + (0 % 4) * 0.5
|
|
expected_val_pe = _valuation_score(latest_pe, scale=12.0)
|
|
expected_val_pb = _valuation_score(latest_pb, scale=2.5)
|
|
expected_vol_ratio_score = _volume_ratio_score(latest_volume_ratio)
|
|
|
|
assert result.values["mom_20"] == pytest.approx(expected_mom20)
|
|
assert result.values["mom_60"] == pytest.approx(expected_mom60)
|
|
assert result.values["mom_5"] == pytest.approx(expected_mom5)
|
|
assert result.values["volat_20"] == pytest.approx(expected_volat20)
|
|
assert result.values["turn_20"] == pytest.approx(expected_turn20)
|
|
assert result.values["turn_5"] == pytest.approx(expected_turn5)
|
|
assert result.values["val_pe_score"] == pytest.approx(expected_val_pe)
|
|
assert result.values["val_pb_score"] == pytest.approx(expected_val_pb)
|
|
assert result.values["volume_ratio_score"] == pytest.approx(expected_vol_ratio_score)
|
|
|
|
trade_date_str = trade_day.strftime("%Y%m%d")
|
|
with db_session(read_only=True) as conn:
|
|
row = conn.execute(
|
|
"""
|
|
SELECT mom_20, mom_60, mom_5, volat_20, turn_20, turn_5, val_pe_score, val_pb_score, volume_ratio_score
|
|
FROM factors WHERE ts_code = ? AND trade_date = ?
|
|
""",
|
|
(ts_code, trade_date_str),
|
|
).fetchone()
|
|
assert row is not None
|
|
assert row["mom_20"] == pytest.approx(expected_mom20)
|
|
assert row["mom_60"] == pytest.approx(expected_mom60)
|
|
assert row["mom_5"] == pytest.approx(expected_mom5)
|
|
assert row["volat_20"] == pytest.approx(expected_volat20)
|
|
assert row["turn_20"] == pytest.approx(expected_turn20)
|
|
assert row["turn_5"] == pytest.approx(expected_turn5)
|
|
assert row["val_pe_score"] == pytest.approx(expected_val_pe)
|
|
assert row["val_pb_score"] == pytest.approx(expected_val_pb)
|
|
assert row["volume_ratio_score"] == pytest.approx(expected_vol_ratio_score)
|
|
|
|
broker = DataBroker()
|
|
latest = broker.fetch_latest(
|
|
ts_code,
|
|
trade_date_str,
|
|
[
|
|
"factors.mom_5",
|
|
"factors.turn_20",
|
|
"factors.turn_5",
|
|
"factors.val_pe_score",
|
|
"factors.val_pb_score",
|
|
"factors.volume_ratio_score",
|
|
],
|
|
)
|
|
assert latest["factors.mom_5"] == pytest.approx(expected_mom5)
|
|
assert latest["factors.turn_20"] == pytest.approx(expected_turn20)
|
|
|
|
# Calling compute_factors again should update existing rows without error.
|
|
second_results = compute_factors(trade_day, specs)
|
|
assert second_results
|
|
assert broker.fetch_latest(ts_code, trade_date_str, ["factors.mom_20"])["factors.mom_20"] == pytest.approx(
|
|
expected_mom20
|
|
)
|
|
|
|
|
|
def test_compute_factors_skip_existing(isolated_db):
|
|
ts_code = "000001.SZ"
|
|
trade_day = date(2025, 2, 10)
|
|
_populate_sample_data(ts_code, trade_day)
|
|
|
|
compute_factors(trade_day)
|
|
skipped = compute_factors(trade_day, skip_existing=True)
|
|
assert skipped == []
|
|
|
|
|
|
def test_compute_factor_range_filters_universe(isolated_db):
|
|
code_a = "000001.SZ"
|
|
code_b = "000002.SZ"
|
|
end_day = date(2025, 3, 5)
|
|
start_day = end_day - timedelta(days=1)
|
|
|
|
_populate_sample_data(code_a, end_day)
|
|
_populate_sample_data(code_b, end_day)
|
|
|
|
results = compute_factor_range(start_day, end_day, ts_codes=[code_a])
|
|
assert results
|
|
assert {result.ts_code for result in results} == {code_a}
|
|
|
|
with db_session(read_only=True) as conn:
|
|
rows = conn.execute("SELECT DISTINCT ts_code FROM factors").fetchall()
|
|
assert {row["ts_code"] for row in rows} == {code_a}
|
|
|
|
repeated = compute_factor_range(start_day, end_day, ts_codes=[code_a])
|
|
assert repeated == []
|
|
|
|
|
|
def test_compute_extended_factors(isolated_db):
|
|
"""Test computation of extended factors."""
|
|
# Use the existing _populate_sample_data function
|
|
from app.utils.data_access import DataBroker
|
|
broker = DataBroker()
|
|
|
|
# Sample data for 5 trading days
|
|
dates = ["20240101", "20240102", "20240103", "20240104", "20240105"]
|
|
ts_codes = ["000001.SZ", "000002.SZ", "600000.SH"]
|
|
|
|
# Populate daily data
|
|
for ts_code in ts_codes:
|
|
for i, trade_date in enumerate(dates):
|
|
broker.insert_or_update_daily(
|
|
ts_code,
|
|
trade_date,
|
|
open_price=10.0 + i * 0.1,
|
|
high=10.5 + i * 0.1,
|
|
low=9.5 + i * 0.1,
|
|
close=10.0 + i * 0.2, # 上涨趋势
|
|
pre_close=10.0 + (i - 1) * 0.2 if i > 0 else 10.0,
|
|
vol=100000 + i * 10000,
|
|
amount=1000000 + i * 100000,
|
|
)
|
|
|
|
broker.insert_or_update_daily_basic(
|
|
ts_code,
|
|
trade_date,
|
|
close=10.0 + i * 0.2,
|
|
turnover_rate=1.0 + i * 0.1,
|
|
turnover_rate_f=1.0 + i * 0.1,
|
|
volume_ratio=1.0 + (i % 3) * 0.2, # 在0.8-1.2之间变化
|
|
pe=15.0 + (i % 3) * 2, # 在15-19之间变化
|
|
pe_ttm=15.0 + (i % 3) * 2,
|
|
pb=1.5 + (i % 3) * 0.1, # 在1.5-1.7之间变化
|
|
ps=3.0 + (i % 3) * 0.2, # 在3.0-3.4之间变化
|
|
ps_ttm=3.0 + (i % 3) * 0.2,
|
|
dv_ratio=2.0 + (i % 3) * 0.1, # 股息率
|
|
total_mv=1000000 + i * 100000,
|
|
circ_mv=800000 + i * 80000,
|
|
)
|
|
|
|
# Compute factors with extended factors
|
|
from app.features.extended_factors import EXTENDED_FACTORS
|
|
all_factors = list(DEFAULT_FACTORS) + EXTENDED_FACTORS
|
|
|
|
trade_day = date(2024, 1, 5)
|
|
results = compute_factors(trade_day, all_factors)
|
|
|
|
# Verify that we got results
|
|
assert results
|
|
|
|
# Verify that extended factors are computed
|
|
result_map = {result.ts_code: result for result in results}
|
|
ts_code = "000001.SZ"
|
|
assert ts_code in result_map
|
|
result = result_map[ts_code]
|
|
|
|
# Check that extended factors are present in the results
|
|
extended_factor_names = [spec.name for spec in EXTENDED_FACTORS]
|
|
for factor_name in extended_factor_names:
|
|
assert factor_name in result.values
|
|
# Values should not be None
|
|
assert result.values[factor_name] is not None
|