初始化提交:价值投资盯盘系统

This commit is contained in:
zyj118 2025-01-13 19:48:17 +08:00
commit 01825eab57
15 changed files with 5279 additions and 0 deletions

38
.gitignore vendored Normal file
View File

@ -0,0 +1,38 @@
# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# 虚拟环境
venv/
ENV/
# IDE
.idea/
.vscode/
*.swp
*.swo
# 项目特定
config.json
*.log
.env
.DS_Store

64
README.md Normal file
View File

@ -0,0 +1,64 @@
# 价值投资盯盘系统
一个基于 Python FastAPI 开发的智能股票分析与监控平台。
## 功能特点
- 实时股票数据监控
- AI 智能分析
- 财务指标分析
- 价值投资建议
- 股东信息查询
- 指数行情展示
## 技术栈
- 后端FastAPI + Python
- 前端Bootstrap 5 + ECharts
- 数据源Tushare API
- 部署Uvicorn
## 安装使用
1. 克隆项目
```bash
git clone https://github.com/你的用户名/stock-monitor.git
cd stock-monitor
```
2. 安装依赖
```bash
pip install -r requirements.txt
```
3. 配置
- 复制 `config.json.example``config.json`
- 在 `config.json` 中配置你的 Tushare Token
4. 运行
```bash
python run.py
```
5. 访问
打开浏览器访问 `http://localhost:8000`
## 配置说明
主要配置项在 `app/config.py` 中:
- TUSHARE_TOKENTushare API Token
- 其他配置项...
## 开发说明
- 遵循 PEP 8 编码规范
- 使用 Python 3.8 或以上版本
- 保持代码简洁清晰
## 贡献指南
欢迎提交 Issue 和 Pull Request
## 许可证
MIT License

25
app/__init__.py Normal file
View File

@ -0,0 +1,25 @@
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import tushare as ts
from app.config import Config
# 确保必要的目录和文件存在
Config.ensure_directories()
# 创建FastAPI实例
app = FastAPI()
# 设置tushare token
ts.set_token(Config.TUSHARE_TOKEN)
pro = ts.pro_api()
# Mount static files
app.mount("/static", StaticFiles(directory=Config.STATIC_DIR), name="static")
# Set up templates
templates = Jinja2Templates(directory=Config.TEMPLATES_DIR)
# 导入路由
from app.api import stock_routes
app.include_router(stock_routes.router)

82
app/api/stock_routes.py Normal file
View File

@ -0,0 +1,82 @@
from fastapi import APIRouter, Request, Form
from typing import Optional
from app.services.stock_service import StockService
from app.services.ai_analysis_service import AIAnalysisService
from app import templates
router = APIRouter(prefix="")
stock_service = StockService()
ai_service = AIAnalysisService()
@router.get("/")
async def home(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@router.get("/api/stock_info/{stock_code}")
async def get_stock_info(stock_code: str, force_refresh: bool = False):
return stock_service.get_stock_info(stock_code, force_refresh)
@router.get("/api/watchlist")
async def get_watchlist():
return stock_service.get_watchlist()
@router.post("/api/add_watch")
async def add_watch(
stock_code: str = Form(...),
target_market_value_min: Optional[float] = Form(None),
target_market_value_max: Optional[float] = Form(None)
):
return stock_service.add_watch(stock_code, target_market_value_min, target_market_value_max)
@router.delete("/api/remove_watch/{stock_code}")
async def remove_watch(stock_code: str):
return stock_service.remove_watch(stock_code)
@router.get("/api/index_info")
async def get_index_info():
return stock_service.get_index_info()
@router.get("/market")
async def market(request: Request):
return templates.TemplateResponse("market.html", {"request": request})
@router.get("/api/company_detail/{stock_code}")
async def get_company_detail(stock_code: str):
return stock_service.get_company_detail(stock_code)
@router.get("/api/holders/{stock_code}")
async def get_top_holders(stock_code: str):
"""获取前十大股东数据"""
return stock_service.get_top_holders(stock_code)
@router.get("/api/performance_forecast/{stock_code}")
async def get_performance_forecast(stock_code: str):
"""获取业绩预告数据"""
# 处理股票代码格式
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
return {"error": "不支持的股票代码"}
return stock_service.get_forecast_data(ts_code)
@router.get("/api/value_analysis/{stock_code}")
async def get_value_analysis(stock_code: str):
"""获取价值投资分析数据"""
return stock_service.get_value_analysis_data(stock_code)
@router.get("/api/ai_analysis/{stock_code}")
async def get_ai_analysis(stock_code: str):
"""获取AI价值投资分析结果"""
try:
# 首先获取价值分析数据
analysis_data = stock_service.get_value_analysis_data(stock_code)
if "error" in analysis_data:
return analysis_data
# 使用AI服务进行分析
return ai_service.analyze_value_investment(analysis_data)
except Exception as e:
return {"error": f"AI分析失败: {str(e)}"}

29
app/config.py Normal file
View File

@ -0,0 +1,29 @@
import os
# 基础配置
class Config:
# 项目根目录
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Tushare API配置
TUSHARE_TOKEN = '90f8a141125e1decb952cd49032b7b8409a2d7fa370745f6c9f45c96'
# 配置文件路径
CONFIG_FILE = os.path.join(BASE_DIR, "config.json")
# 模板目录
TEMPLATES_DIR = os.path.join(BASE_DIR, "app", "templates")
# 静态文件目录
STATIC_DIR = os.path.join(BASE_DIR, "app", "static")
# 确保目录存在
@classmethod
def ensure_directories(cls):
os.makedirs(cls.STATIC_DIR, exist_ok=True)
os.makedirs(cls.TEMPLATES_DIR, exist_ok=True)
# 确保配置文件存在
if not os.path.exists(cls.CONFIG_FILE):
with open(cls.CONFIG_FILE, 'w', encoding='utf-8') as f:
f.write('{"watchlist": {}}')

32
app/models/stock.py Normal file
View File

@ -0,0 +1,32 @@
from pydantic import BaseModel
from typing import Dict, Optional, Union, List
class MarketValueTarget(BaseModel):
min: Optional[float] = None
max: Optional[float] = None
class StockTarget(BaseModel):
target_market_value: Optional[MarketValueTarget] = None
class StockInfo(BaseModel):
code: str
name: str
market_value: float
pe_ratio: float
pb_ratio: float
ps_ratio: float
dividend_yield: float
price: float
change_percent: float
roe: float
gross_profit_margin: float
net_profit_margin: float
debt_to_assets: float
revenue_yoy: float
net_profit_yoy: float
bps: float
ocfps: float
class StockResponse(BaseModel):
stock_info: StockInfo
targets: StockTarget

View File

@ -0,0 +1,308 @@
import json
import os
import re
from openai import OpenAI
class AIAnalysisService:
def __init__(self):
self.model = "ep-20250111143839-vn8l8" # endpoint ID
self.client = OpenAI(
api_key = "cf4edd4d-55cd-4e0f-82f6-49072660bdaf", # 直接使用API Key
base_url = "https://ark.cn-beijing.volces.com/api/v3"
)
def analyze_value_investment(self, analysis_data):
"""
对股票进行价值投资分析
:param analysis_data: 包含各项财务指标的字典
:return: AI分析结果
"""
try:
# 打印输入数据用于调试
print(f"输入的分析数据: {json.dumps(analysis_data, ensure_ascii=False, indent=2)}")
# 构建提示词
prompt = self._build_analysis_prompt(analysis_data)
# 打印提示词用于调试
print(f"AI分析提示词: {prompt}")
# 调用API
response = self.client.chat.completions.create(
model=self.model,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
]
)
# 获取分析结果
analysis_text = response.choices[0].message.content
print(f"AI原始返回结果: {analysis_text}")
try:
# 尝试解析JSON
analysis_result = json.loads(analysis_text)
print(f"解析后的JSON结果: {json.dumps(analysis_result, ensure_ascii=False, indent=2)}")
# 构建完整的返回结果
result = analysis_result
print(f"最终返回结果: {json.dumps(result, ensure_ascii=False, indent=2)}")
return result
except json.JSONDecodeError as e:
print(f"JSON解析失败: {str(e)}")
# 如果JSON解析失败返回错误信息
return {
'stock_info': analysis_data.get('stock_info', {}),
'valuation': analysis_data.get('valuation', {}),
'profitability': analysis_data.get('profitability', {}),
'growth': analysis_data.get('growth', {}),
'operation': analysis_data.get('operation', {}),
'solvency': analysis_data.get('solvency', {}),
'cash_flow': analysis_data.get('cash_flow', {}),
'per_share': analysis_data.get('per_share', {}),
'analysis_result': {
"error": "AI返回的结果不是有效的JSON格式",
"raw_text": analysis_text
}
}
except Exception as e:
print(f"AI分析失败: {str(e)}")
print(f"错误详情: {e.__class__.__name__}")
import traceback
print(f"错误堆栈: {traceback.format_exc()}")
return {"error": f"AI分析失败: {str(e)}"}
def _parse_analysis_result(self, analysis_text, current_price):
"""
解析AI返回的分析文本提取结构化信息
"""
try:
print(f"开始解析分析文本...")
# 提取投资建议
suggestion_pattern = r"投资建议[:]([\s\S]*?)(?=\n\n|$)"
suggestion_match = re.search(suggestion_pattern, analysis_text, re.MULTILINE | re.DOTALL)
investment_suggestion = suggestion_match.group(1).strip() if suggestion_match else ""
print(f"提取到的投资建议: {investment_suggestion}")
# 提取合理价格区间
price_pattern = r"合理股价区间[:]\s*(\d+\.?\d*)\s*[元-]\s*(\d+\.?\d*)[元]"
price_match = re.search(price_pattern, analysis_text)
if price_match:
price_min = float(price_match.group(1))
price_max = float(price_match.group(2))
else:
price_min = current_price * 0.8
price_max = current_price * 1.2
print(f"提取到的价格区间: {price_min}-{price_max}")
# 提取目标市值区间(单位:亿元)
market_value_pattern = r"目标市值区间[:]\s*(\d+\.?\d*)\s*[亿-]\s*(\d+\.?\d*)[亿]"
market_value_match = re.search(market_value_pattern, analysis_text)
if market_value_match:
market_value_min = float(market_value_match.group(1))
market_value_max = float(market_value_match.group(2))
else:
# 尝试从文本中提取计算得出的市值
calc_pattern = r"最低市值[=≈约]*(\d+\.?\d*)[亿].*最高市值[=≈约]*(\d+\.?\d*)[亿]"
calc_match = re.search(calc_pattern, analysis_text)
if calc_match:
market_value_min = float(calc_match.group(1))
market_value_max = float(calc_match.group(2))
else:
market_value_min = 0
market_value_max = 0
print(f"提取到的市值区间: {market_value_min}-{market_value_max}")
# 提取各个分析维度的内容
analysis_patterns = {
"valuation_analysis": r"估值分析([\s\S]*?)(?=###\s*财务状况分析|###\s*成长性分析|$)",
"financial_health": r"财务状况分析([\s\S]*?)(?=###\s*成长性分析|###\s*风险评估|$)",
"growth_potential": r"成长性分析([\s\S]*?)(?=###\s*风险评估|###\s*投资建议|$)",
"risk_assessment": r"风险评估([\s\S]*?)(?=###\s*投资建议|$)"
}
analysis_results = {}
for key, pattern in analysis_patterns.items():
match = re.search(pattern, analysis_text, re.MULTILINE | re.DOTALL)
content = match.group(1).strip() if match else ""
# 移除markdown标记和多余的空白字符
content = re.sub(r'[#\-*]', '', content).strip()
analysis_results[key] = content
print(f"提取到的{key}: {content[:100]}...")
return {
"investment_suggestion": investment_suggestion,
"analysis": analysis_results,
"price_analysis": {
"reasonable_price_range": {
"min": price_min,
"max": price_max
},
"target_market_value": {
"min": market_value_min,
"max": market_value_max
}
}
}
except Exception as e:
print(f"解析分析结果失败: {str(e)}")
print(f"错误详情: {e.__class__.__name__}")
import traceback
print(f"错误堆栈: {traceback.format_exc()}")
return {
"investment_suggestion": "分析结果解析失败",
"analysis": {
"valuation_analysis": "解析失败",
"financial_health": "解析失败",
"growth_potential": "解析失败",
"risk_assessment": "解析失败"
},
"price_analysis": {
"reasonable_price_range": {
"min": current_price * 0.8,
"max": current_price * 1.2
},
"target_market_value": {
"min": 0,
"max": 0
}
}
}
def _build_analysis_prompt(self, data):
"""
构建AI分析提示词
"""
stock_info = data.get('stock_info', {})
valuation = data.get('valuation', {})
profitability = data.get('profitability', {})
growth = data.get('growth', {})
operation = data.get('operation', {})
solvency = data.get('solvency', {})
cash_flow = data.get('cash_flow', {})
per_share = data.get('per_share', {})
# 格式化数值保留4位小数
def format_number(value):
try:
if value is None:
return "0.0000"
if isinstance(value, (int, float)):
if abs(value) < 0.0001: # 对于非常小的数值
return "0.0000"
return f"{value:.4f}"
if isinstance(value, str):
try:
value = float(value)
if abs(value) < 0.0001:
return "0.0000"
return f"{value:.4f}"
except:
pass
return str(value)
except:
return "0.0000"
# 格式化百分比保留2位小数
def format_percent(value):
try:
if value is None:
return "0.00%"
if isinstance(value, (int, float)):
# 如果值已经是小数形式如0.5代表50%则乘以100
if abs(value) <= 1:
value = value * 100
return f"{value:.2f}%"
if isinstance(value, str):
try:
value = float(value)
if abs(value) <= 1:
value = value * 100
return f"{value:.2f}%"
except:
pass
return "0.00%"
except:
return "0.00%"
# 构建数据部分
data_section = f"""请作为一位专业的价值投资分析师,对{stock_info.get('name', '')}({stock_info.get('code', '')})进行深入的价值投资分析。
当前市场信息
- 市盈率(PE){format_number(valuation.get('pe_ratio'))}
- 市净率(PB){format_number(valuation.get('pb_ratio'))}
- 市销率(PS){format_number(valuation.get('ps_ratio'))}
- 股息率{format_percent(valuation.get('dividend_yield'))}
- 总市值(亿元){format_number(valuation.get('total_market_value'))}
- 当前股价{format_number(stock_info.get('current_price'))}
盈利能力指标
- ROE{format_percent(profitability.get('roe'))}
- 毛利率{format_percent(profitability.get('gross_margin'))}
- 净利率{format_percent(profitability.get('net_margin'))}
成长能力指标
- 净利润增长率{format_percent(growth.get('net_profit_growth'))}
- 扣非净利润增长率{format_percent(growth.get('deducted_net_profit_growth'))}
- 营收增长率{format_percent(growth.get('revenue_growth'))}
运营能力指标
- 总资产周转率{format_number(operation.get('asset_turnover'))}/
- 存货周转率{format_number(operation.get('inventory_turnover'))}/
- 应收账款周转率{format_number(operation.get('receivables_turnover'))}/
偿债能力指标
- 流动比率{format_number(solvency.get('current_ratio'))}
- 速动比率{format_number(solvency.get('quick_ratio'))}
- 资产负债率{format_percent(solvency.get('debt_to_assets'))}
现金流指标
- 经营现金流/营收比{format_percent(cash_flow.get('ocf_to_revenue'))}
- 经营现金流同比增长{format_percent(cash_flow.get('ocf_growth'))}
每股指标
- 每股收益(EPS){format_number(per_share.get('eps'))}
- 每股净资产(BPS){format_number(per_share.get('bps'))}
- 每股现金流(CFPS){format_number(per_share.get('cfps'))}
- 每股经营现金流(OCFPS){format_number(per_share.get('ocfps'))}
- 每股未分配利润{format_number(per_share.get('retained_eps'))}"""
# 构建分析要求部分
analysis_requirements = """
请基于以上数据从价值投资的角度进行分析请特别注意
1. 结合行业特点公司竞争力成长性等因素给出合理的估值区间
2. 存货周转率为0可能表示数据缺失分析时需要谨慎对待
3. 考虑当前市场环境和行业整体估值水平
在给出估值区间时请充分考虑
1. 公司所处行业特点和竞争格局
2. 公司的竞争优势和市场地位
3. 当前的盈利能力和成长性
4. 财务健康状况和风险因素
5. 宏观经济环境和行业周期
6. 可比公司的估值水平
请以JSON格式返回分析结果包含以下内容
1. investment_suggestion: 投资建议包含summary(总体建议)action(具体操作建议)和key_points(关注重点)
2. analysis: 详细分析包含估值分析财务健康状况成长潜力和风险评估
3. price_analysis: 价格分析包含合理价格区间和目标市值区间
请确保返回的是一个有效的JSON格式数值使用数字而不是字符串价格市值等文本分析使用字符串分析要客观专业详细"""
# 组合完整的提示词
prompt = data_section + analysis_requirements
return prompt

View File

@ -0,0 +1,573 @@
import json
import os
from datetime import datetime
import pandas as pd
from app import pro
from app.config import Config
import numpy as np
class StockService:
def __init__(self):
self.watchlist = {}
self.cache_file = os.path.join(Config.BASE_DIR, "stock_cache.json")
self.load_watchlist()
self.load_cache()
def load_watchlist(self):
try:
if os.path.exists(Config.CONFIG_FILE):
with open(Config.CONFIG_FILE, 'r', encoding='utf-8') as f:
data = json.load(f)
self.watchlist = data.get('watchlist', {})
except Exception as e:
print(f"Error loading watchlist: {str(e)}")
self.watchlist = {}
def _save_watchlist(self):
try:
with open(Config.CONFIG_FILE, 'w', encoding='utf-8') as f:
json.dump({'watchlist': self.watchlist}, f, ensure_ascii=False, indent=4)
except Exception as e:
print(f"Error saving watchlist: {str(e)}")
def load_cache(self):
try:
if os.path.exists(self.cache_file):
with open(self.cache_file, 'r', encoding='utf-8') as f:
self.cache_data = json.load(f)
else:
self.cache_data = {}
except Exception as e:
print(f"Error loading cache: {str(e)}")
self.cache_data = {}
def save_cache(self, stock_code, data):
try:
self.cache_data[stock_code] = {
'data': data,
'timestamp': datetime.now().strftime('%Y-%m-%d')
}
with open(self.cache_file, 'w', encoding='utf-8') as f:
json.dump(self.cache_data, f, ensure_ascii=False, indent=4)
except Exception as e:
print(f"Error saving cache: {str(e)}")
def get_stock_info(self, stock_code: str, force_refresh: bool = False):
try:
# 检查缓存
today = datetime.now().strftime('%Y-%m-%d')
if not force_refresh and stock_code in self.cache_data and self.cache_data[stock_code]['timestamp'] == today:
print(f"从缓存获取股票 {stock_code} 的数据")
cached_data = self.cache_data[stock_code]['data']
cached_data['stock_info']['from_cache'] = True
return cached_data
# 如果强制刷新或缓存不存在或已过期从API获取数据
print(f"从API获取股票 {stock_code} 的数据...")
# 处理股票代码格式
if len(stock_code) != 6:
return {"error": "股票代码格式错误"}
# 确定交易所
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
return {"error": "不支持的股票代码"}
# 获取基本信息和总市值
basic_info = pro.daily_basic(ts_code=ts_code, fields='ts_code,total_mv', limit=1)
if basic_info.empty:
return {"error": "股票代码不存在"}
# 获取股票名称
stock_name = pro.stock_basic(ts_code=ts_code, fields='name').iloc[0]['name']
# 获取最新财务指标
fina_indicator = pro.fina_indicator(ts_code=ts_code, period=datetime.now().strftime('%Y%m%d'), fields='roe,grossprofit_margin,netprofit_margin,debt_to_assets,op_income_yoy,netprofit_yoy,bps,ocfps')
if fina_indicator.empty:
fina_indicator = pro.fina_indicator(ts_code=ts_code, limit=1)
# 获取实时行情
today = datetime.now().strftime('%Y%m%d')
daily_data = pro.daily(ts_code=basic_info['ts_code'].iloc[0], start_date=today, end_date=today)
if daily_data.empty:
daily_data = pro.daily(ts_code=basic_info['ts_code'].iloc[0], limit=1)
if daily_data.empty:
return {"error": "无法获取股票行情数据"}
# 获取市值信息(用于其他指标)
daily_basic = pro.daily_basic(ts_code=basic_info['ts_code'].iloc[0],
fields='ts_code,trade_date,pe,pb,ps,dv_ratio',
limit=1)
if daily_basic.empty:
return {"error": "无法获取股票基础数据"}
latest_basic = daily_basic.iloc[0]
latest_fina = fina_indicator.iloc[0] if not fina_indicator.empty else pd.Series()
# 计算实时总市值(单位:亿元)
current_price = float(daily_data['close'].iloc[0])
market_value = float(basic_info['total_mv'].iloc[0]) / 10000 # 转换为亿元
print(f"市值计算: 当前价格={current_price}, 总市值={market_value}亿元")
# 处理股息率tushare返回的是百分比值需要转换为小数
dv_ratio = float(latest_basic['dv_ratio']) if pd.notna(latest_basic['dv_ratio']) else 0
dividend_yield = round(dv_ratio / 100, 4) # 转换为小数
# 处理财务指标确保所有值都有默认值0转换为小数
roe = round(float(latest_fina['roe']) / 100, 4) if pd.notna(latest_fina.get('roe')) else 0
gross_profit_margin = round(float(latest_fina['grossprofit_margin']) / 100, 4) if pd.notna(latest_fina.get('grossprofit_margin')) else 0
net_profit_margin = round(float(latest_fina['netprofit_margin']) / 100, 4) if pd.notna(latest_fina.get('netprofit_margin')) else 0
debt_to_assets = round(float(latest_fina['debt_to_assets']) / 100, 4) if pd.notna(latest_fina.get('debt_to_assets')) else 0
revenue_yoy = round(float(latest_fina['op_income_yoy']) / 100, 4) if pd.notna(latest_fina.get('op_income_yoy')) else 0
net_profit_yoy = round(float(latest_fina['netprofit_yoy']) / 100, 4) if pd.notna(latest_fina.get('netprofit_yoy')) else 0
bps = round(float(latest_fina['bps']), 3) if pd.notna(latest_fina.get('bps')) else 0 # 保留3位小数
ocfps = round(float(latest_fina['ocfps']), 3) if pd.notna(latest_fina.get('ocfps')) else 0 # 保留3位小数
stock_info = {
"code": stock_code,
"name": stock_name,
"market_value": round(market_value, 2), # 总市值(亿元)
"pe_ratio": round(float(latest_basic['pe']), 2) if pd.notna(latest_basic['pe']) else 0, # 市盈率
"pb_ratio": round(float(latest_basic['pb']), 2) if pd.notna(latest_basic['pb']) else 0, # 市净率
"ps_ratio": round(float(latest_basic['ps']), 2) if pd.notna(latest_basic['ps']) else 0, # 市销率
"dividend_yield": dividend_yield, # 股息率(小数)
"price": round(current_price, 2), # 股价保留2位小数
"change_percent": round(float(daily_data['pct_chg'].iloc[0]) / 100, 4), # 涨跌幅转换为小数
# 财务指标(全部转换为小数)
"roe": roe, # ROE小数
"gross_profit_margin": gross_profit_margin, # 毛利率(小数)
"net_profit_margin": net_profit_margin, # 净利率(小数)
"debt_to_assets": debt_to_assets, # 资产负债率(小数)
"revenue_yoy": revenue_yoy, # 营收增长率(小数)
"net_profit_yoy": net_profit_yoy, # 净利润增长率(小数)
"bps": bps, # 每股净资产
"ocfps": ocfps, # 每股经营现金流
"from_cache": False
}
# 获取目标值
targets = self.watchlist.get(stock_code, {})
result = {
"stock_info": stock_info,
"targets": targets
}
# 保存到缓存
self.save_cache(stock_code, result)
return result
except Exception as e:
print(f"Error fetching stock info: {str(e)}")
import traceback
print(f"详细错误: {traceback.format_exc()}")
return {"error": f"获取股票数据失败: {str(e)}"}
def get_watchlist(self):
result = []
for stock_code, targets in self.watchlist.items():
try:
# 从缓存获取数据
today = datetime.now().strftime('%Y-%m-%d')
if stock_code in self.cache_data and self.cache_data[stock_code]['timestamp'] == today:
result.append(self.cache_data[stock_code]['data'])
continue
# 如果没有缓存,只获取基本信息
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
print(f"不支持的股票代码: {stock_code}")
continue
# 获取股票名称
stock_name = pro.stock_basic(ts_code=ts_code, fields='name').iloc[0]['name']
result.append({
"stock_info": {
"code": stock_code,
"name": stock_name
},
"targets": targets
})
except Exception as e:
print(f"Error getting watchlist info for {stock_code}: {str(e)}")
continue
return result
def add_watch(self, stock_code: str, target_market_value_min: float = None, target_market_value_max: float = None):
self.watchlist[stock_code] = {
"target_market_value": {
"min": target_market_value_min,
"max": target_market_value_max
}
}
self._save_watchlist()
return {"status": "success"}
def remove_watch(self, stock_code: str):
if stock_code in self.watchlist:
del self.watchlist[stock_code]
# 同时删除缓存
if stock_code in self.cache_data:
del self.cache_data[stock_code]
try:
with open(self.cache_file, 'w', encoding='utf-8') as f:
json.dump(self.cache_data, f, ensure_ascii=False, indent=4)
except Exception as e:
print(f"Error saving cache after removal: {str(e)}")
self._save_watchlist()
return {"status": "success"}
def get_index_info(self):
"""获取主要指数数据"""
try:
# 主要指数代码列表
index_codes = {
'000001.SH': '上证指数',
'399001.SZ': '深证成指',
'399006.SZ': '创业板指',
'000016.SH': '上证50',
'000300.SH': '沪深300',
'000905.SH': '中证500',
'000852.SH': '中证1000',
'899050.BJ': '北证50',
}
result = []
for ts_code, name in index_codes.items():
try:
# 获取指数基本信息
df = pro.index_daily(ts_code=ts_code, limit=1)
if not df.empty:
data = df.iloc[0]
# 获取K线数据(最近20天)
kline_df = pro.index_daily(ts_code=ts_code, limit=20)
kline_data = []
if not kline_df.empty:
for _, row in kline_df.iterrows():
kline_data.append({
'date': row['trade_date'],
'open': float(row['open']),
'close': float(row['close']),
'high': float(row['high']),
'low': float(row['low']),
'vol': float(row['vol'])
})
result.append({
'code': ts_code,
'name': name,
'price': float(data['close']),
'change': float(data['pct_chg']),
'kline_data': kline_data
})
except Exception as e:
print(f"获取指数 {ts_code} 数据失败: {str(e)}")
continue
return result
except Exception as e:
print(f"获取指数数据失败: {str(e)}")
return []
def get_company_detail(self, stock_code: str):
try:
print(f"开始获取公司详情: {stock_code}")
# 处理股票代码格式
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
print(f"不支持的股票代码格式: {stock_code}")
return {"error": "不支持的股票代码"}
print(f"转换后的ts_code: {ts_code}")
# 获取公司基本信息
basic = pro.stock_basic(ts_code=ts_code, fields='name,industry,area,list_date')
if basic.empty:
print(f"无法获取公司基本信息: {ts_code}")
return {"error": "无法获取公司信息"}
company_info = basic.iloc[0]
print(f"获取到的公司基本信息: {company_info.to_dict()}")
# 获取公司详细信息
try:
company_detail = pro.stock_company(ts_code=ts_code)
if not company_detail.empty:
detail_info = company_detail.iloc[0]
company_detail_dict = {
"com_name": str(detail_info.get('com_name', '')),
"chairman": str(detail_info.get('chairman', '')),
"manager": str(detail_info.get('manager', '')),
"secretary": str(detail_info.get('secretary', '')),
"reg_capital": float(detail_info.get('reg_capital', 0)) if pd.notna(detail_info.get('reg_capital')) else 0,
"setup_date": str(detail_info.get('setup_date', '')),
"province": str(detail_info.get('province', '')),
"city": str(detail_info.get('city', '')),
"introduction": str(detail_info.get('introduction', '')),
"website": f"http://{str(detail_info.get('website', '')).strip('http://').strip('https://')}" if detail_info.get('website') else "",
"email": str(detail_info.get('email', '')),
"office": str(detail_info.get('office', '')),
"employees": int(detail_info.get('employees', 0)) if pd.notna(detail_info.get('employees')) else 0,
"main_business": str(detail_info.get('main_business', '')),
"business_scope": str(detail_info.get('business_scope', ''))
}
else:
company_detail_dict = {
"com_name": "", "chairman": "", "manager": "", "secretary": "",
"reg_capital": 0, "setup_date": "", "province": "", "city": "",
"introduction": "", "website": "", "email": "", "office": "",
"employees": 0, "main_business": "", "business_scope": ""
}
except Exception as e:
print(f"获取公司详细信息失败: {str(e)}")
company_detail_dict = {
"com_name": "", "chairman": "", "manager": "", "secretary": "",
"reg_capital": 0, "setup_date": "", "province": "", "city": "",
"introduction": "", "website": "", "email": "", "office": "",
"employees": 0, "main_business": "", "business_scope": ""
}
# 获取最新财务指标
try:
fina = pro.fina_indicator(ts_code=ts_code, period=datetime.now().strftime('%Y%m%d'))
if fina.empty:
print("当前期间无财务数据,尝试获取最新一期数据")
fina = pro.fina_indicator(ts_code=ts_code, limit=1)
if fina.empty:
print(f"无法获取财务指标数据: {ts_code}")
return {"error": "无法获取财务数据"}
fina_info = fina.iloc[0]
print(f"获取到的财务指标: {fina_info.to_dict()}")
except Exception as e:
print(f"获取财务指标失败: {str(e)}")
return {"error": "获取财务指标失败"}
# 获取市值信息用于PE、PB等指标
try:
daily_basic = pro.daily_basic(ts_code=ts_code, fields='pe,pb,ps,dv_ratio', limit=1)
if not daily_basic.empty:
latest_basic = daily_basic.iloc[0]
else:
print("无法获取PE/PB数据")
latest_basic = pd.Series({'pe': 0, 'pb': 0, 'ps': 0, 'dv_ratio': 0})
except Exception as e:
print(f"获取PE/PB失败: {str(e)}")
latest_basic = pd.Series({'pe': 0, 'pb': 0, 'ps': 0, 'dv_ratio': 0})
result = {
"basic_info": {
"name": str(company_info['name']),
"industry": str(company_info['industry']),
"list_date": str(company_info['list_date']),
"area": str(company_info['area']),
**company_detail_dict
},
"financial_info": {
# 估值指标
"pe_ratio": float(latest_basic['pe']) if pd.notna(latest_basic['pe']) else 0,
"pb_ratio": float(latest_basic['pb']) if pd.notna(latest_basic['pb']) else 0,
"ps_ratio": float(latest_basic['ps']) if pd.notna(latest_basic['ps']) else 0,
"dividend_yield": float(latest_basic['dv_ratio'])/100 if pd.notna(latest_basic['dv_ratio']) else 0,
# 盈利能力
"roe": float(fina_info['roe']) if pd.notna(fina_info.get('roe')) else 0,
"roe_dt": float(fina_info['roe_dt']) if pd.notna(fina_info.get('roe_dt')) else 0,
"roa": float(fina_info['roa']) if pd.notna(fina_info.get('roa')) else 0,
"grossprofit_margin": float(fina_info['grossprofit_margin']) if pd.notna(fina_info.get('grossprofit_margin')) else 0,
"netprofit_margin": float(fina_info['netprofit_margin']) if pd.notna(fina_info.get('netprofit_margin')) else 0,
# 成长能力
"netprofit_yoy": float(fina_info['netprofit_yoy']) if pd.notna(fina_info.get('netprofit_yoy')) else 0,
"dt_netprofit_yoy": float(fina_info['dt_netprofit_yoy']) if pd.notna(fina_info.get('dt_netprofit_yoy')) else 0,
"tr_yoy": float(fina_info['tr_yoy']) if pd.notna(fina_info.get('tr_yoy')) else 0,
"or_yoy": float(fina_info['or_yoy']) if pd.notna(fina_info.get('or_yoy')) else 0,
# 营运能力
"assets_turn": float(fina_info['assets_turn']) if pd.notna(fina_info.get('assets_turn')) else 0,
"inv_turn": float(fina_info['inv_turn']) if pd.notna(fina_info.get('inv_turn')) else 0,
"ar_turn": float(fina_info['ar_turn']) if pd.notna(fina_info.get('ar_turn')) else 0,
"ca_turn": float(fina_info['ca_turn']) if pd.notna(fina_info.get('ca_turn')) else 0,
# 偿债能力
"current_ratio": float(fina_info['current_ratio']) if pd.notna(fina_info.get('current_ratio')) else 0,
"quick_ratio": float(fina_info['quick_ratio']) if pd.notna(fina_info.get('quick_ratio')) else 0,
"debt_to_assets": float(fina_info['debt_to_assets']) if pd.notna(fina_info.get('debt_to_assets')) else 0,
"debt_to_eqt": float(fina_info['debt_to_eqt']) if pd.notna(fina_info.get('debt_to_eqt')) else 0,
# 现金流
"ocf_to_or": float(fina_info['ocf_to_or']) if pd.notna(fina_info.get('ocf_to_or')) else 0,
"ocf_to_opincome": float(fina_info['ocf_to_opincome']) if pd.notna(fina_info.get('ocf_to_opincome')) else 0,
"ocf_yoy": float(fina_info['ocf_yoy']) if pd.notna(fina_info.get('ocf_yoy')) else 0,
# 每股指标
"eps": float(fina_info['eps']) if pd.notna(fina_info.get('eps')) else 0,
"dt_eps": float(fina_info['dt_eps']) if pd.notna(fina_info.get('dt_eps')) else 0,
"bps": float(fina_info['bps']) if pd.notna(fina_info.get('bps')) else 0,
"ocfps": float(fina_info['ocfps']) if pd.notna(fina_info.get('ocfps')) else 0,
"retainedps": float(fina_info['retainedps']) if pd.notna(fina_info.get('retainedps')) else 0,
"cfps": float(fina_info['cfps']) if pd.notna(fina_info.get('cfps')) else 0,
"ebit_ps": float(fina_info['ebit_ps']) if pd.notna(fina_info.get('ebit_ps')) else 0,
"fcff_ps": float(fina_info['fcff_ps']) if pd.notna(fina_info.get('fcff_ps')) else 0,
"fcfe_ps": float(fina_info['fcfe_ps']) if pd.notna(fina_info.get('fcfe_ps')) else 0
}
}
print(f"返回结果: {result}")
return result
except Exception as e:
print(f"Error getting company detail: {str(e)}")
import traceback
print(f"详细错误: {traceback.format_exc()}")
return {"error": f"获取公司详情失败: {str(e)}"}
def get_top_holders(self, stock_code: str):
"""获取前十大股东数据"""
try:
# 处理股票代码格式
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
return {"error": "不支持的股票代码"}
# 获取最新一期的股东数据
df = pro.top10_holders(ts_code=ts_code, limit=10)
if df.empty:
return {"error": "暂无股东数据"}
# 按持股比例降序排序
df = df.sort_values('hold_ratio', ascending=False)
# 获取最新的报告期
latest_end_date = df['end_date'].max()
latest_data = df[df['end_date'] == latest_end_date]
holders = []
for _, row in latest_data.iterrows():
holders.append({
"holder_name": str(row['holder_name']),
"hold_amount": float(row['hold_amount']) if pd.notna(row['hold_amount']) else 0,
"hold_ratio": float(row['hold_ratio']) if pd.notna(row['hold_ratio']) else 0,
"hold_change": float(row['hold_change']) if pd.notna(row['hold_change']) else 0,
"ann_date": str(row['ann_date']),
"end_date": str(row['end_date'])
})
result = {
"holders": holders,
"total_ratio": sum(holder['hold_ratio'] for holder in holders), # 合计持股比例
"report_date": str(latest_end_date) # 报告期
}
return result
except Exception as e:
print(f"获取股东数据失败: {str(e)}")
import traceback
print(f"详细错误: {traceback.format_exc()}")
return {"error": f"获取股东数据失败: {str(e)}"}
def get_value_analysis_data(self, stock_code: str):
"""获取价值投资分析所需的关键财务指标"""
try:
# 处理股票代码格式
if stock_code.startswith('6'):
ts_code = f"{stock_code}.SH"
elif stock_code.startswith(('0', '3')):
ts_code = f"{stock_code}.SZ"
else:
return {"error": "不支持的股票代码"}
# 获取最新每日指标(估值数据)
daily_basic = pro.daily_basic(ts_code=ts_code, fields='pe,pb,ps,dv_ratio,total_mv', limit=1)
if daily_basic.empty:
return {"error": "无法获取股票估值数据"}
# 获取最新财务指标
fina = pro.fina_indicator(ts_code=ts_code, fields='''roe,grossprofit_margin,netprofit_margin,
netprofit_yoy,dt_netprofit_yoy,tr_yoy,or_yoy,assets_turn,inv_turn,ar_turn,current_ratio,
quick_ratio,debt_to_assets,ocf_to_or,ocf_yoy,eps,bps,cfps,ocfps,retainedps''', limit=1)
if fina.empty:
return {"error": "无法获取财务指标数据"}
# 获取股票名称和当前价格
basic_info = pro.daily(ts_code=ts_code, fields='close,trade_date', limit=1)
stock_name = pro.stock_basic(ts_code=ts_code, fields='name').iloc[0]['name']
# 整合数据
latest_daily = daily_basic.iloc[0]
latest_fina = fina.iloc[0]
latest_price = basic_info.iloc[0]
analysis_data = {
"stock_info": {
"code": stock_code,
"name": stock_name,
"current_price": float(latest_price['close']),
"trade_date": str(latest_price['trade_date'])
},
"valuation": {
"pe_ratio": float(latest_daily['pe']) if pd.notna(latest_daily['pe']) else None,
"pb_ratio": float(latest_daily['pb']) if pd.notna(latest_daily['pb']) else None,
"ps_ratio": float(latest_daily['ps']) if pd.notna(latest_daily['ps']) else None,
"dividend_yield": float(latest_daily['dv_ratio'])/100 if pd.notna(latest_daily['dv_ratio']) else None,
"total_market_value": float(latest_daily['total_mv'])/10000 if pd.notna(latest_daily['total_mv']) else None # 转换为亿元
},
"profitability": {
"roe": float(latest_fina['roe'])/100 if pd.notna(latest_fina['roe']) else None,
"gross_margin": float(latest_fina['grossprofit_margin'])/100 if pd.notna(latest_fina['grossprofit_margin']) else None,
"net_margin": float(latest_fina['netprofit_margin'])/100 if pd.notna(latest_fina['netprofit_margin']) else None
},
"growth": {
"net_profit_growth": float(latest_fina['netprofit_yoy'])/100 if pd.notna(latest_fina['netprofit_yoy']) else None,
"deducted_net_profit_growth": float(latest_fina['dt_netprofit_yoy'])/100 if pd.notna(latest_fina['dt_netprofit_yoy']) else None,
"revenue_growth": float(latest_fina['tr_yoy'])/100 if pd.notna(latest_fina['tr_yoy']) else None,
"operating_revenue_growth": float(latest_fina['or_yoy'])/100 if pd.notna(latest_fina['or_yoy']) else None
},
"operation": {
"asset_turnover": float(latest_fina['assets_turn']) if pd.notna(latest_fina['assets_turn']) else None,
"inventory_turnover": float(latest_fina['inv_turn']) if pd.notna(latest_fina['inv_turn']) else None,
"receivables_turnover": float(latest_fina['ar_turn']) if pd.notna(latest_fina['ar_turn']) else None
},
"solvency": {
"current_ratio": float(latest_fina['current_ratio']) if pd.notna(latest_fina['current_ratio']) else None,
"quick_ratio": float(latest_fina['quick_ratio']) if pd.notna(latest_fina['quick_ratio']) else None,
"debt_to_assets": float(latest_fina['debt_to_assets'])/100 if pd.notna(latest_fina['debt_to_assets']) else None
},
"cash_flow": {
"ocf_to_revenue": float(latest_fina['ocf_to_or'])/100 if pd.notna(latest_fina['ocf_to_or']) else None,
"ocf_growth": float(latest_fina['ocf_yoy'])/100 if pd.notna(latest_fina['ocf_yoy']) else None
},
"per_share": {
"eps": float(latest_fina['eps']) if pd.notna(latest_fina['eps']) else None,
"bps": float(latest_fina['bps']) if pd.notna(latest_fina['bps']) else None,
"cfps": float(latest_fina['cfps']) if pd.notna(latest_fina['cfps']) else None,
"ocfps": float(latest_fina['ocfps']) if pd.notna(latest_fina['ocfps']) else None,
"retained_eps": float(latest_fina['retainedps']) if pd.notna(latest_fina['retainedps']) else None
}
}
return analysis_data
except Exception as e:
print(f"获取价值投资分析数据失败: {str(e)}")
import traceback
print(f"详细错误: {traceback.format_exc()}")
return {"error": f"获取价值投资分析数据失败: {str(e)}"}

1514
app/templates/index.html Normal file

File diff suppressed because it is too large Load Diff

223
app/templates/market.html Normal file
View File

@ -0,0 +1,223 @@
<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>指数行情 - 价值投资盯盘系统</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.7.2/font/bootstrap-icons.css">
<style>
body {
background-color: #f8f9fa;
}
.navbar {
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
height: 50px;
padding: 0;
}
.navbar-brand {
color: white;
font-size: 16px;
text-decoration: none;
margin-right: 50px;
}
.navbar-nav {
display: flex;
list-style: none;
margin: 0;
padding: 0;
}
.nav-item {
margin-right: 30px;
}
.nav-link {
color: white !important;
text-decoration: none;
font-size: 14px;
line-height: 50px;
padding: 0;
}
.nav-link.active {
font-weight: bold;
}
.iconfont {
font-size: 14px;
margin-right: 4px;
}
.index-container {
padding: 20px;
}
.index-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin: 0 auto;
max-width: 1400px;
}
.index-card {
background: white;
border-radius: 12px;
padding: 20px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.index-name {
font-size: 18px;
font-weight: 600;
margin-bottom: 10px;
color: #1e3c72;
}
.index-price {
font-size: 24px;
font-weight: bold;
}
.index-change {
font-size: 14px;
padding: 4px 10px;
border-radius: 6px;
background: rgba(0,0,0,0.05);
}
.index-chart {
width: 100%;
height: 200px;
margin-top: 15px;
}
.positive-value {
color: #28a745;
}
.negative-value {
color: #dc3545;
}
</style>
</head>
<body>
<nav class="navbar navbar-expand navbar-dark">
<div class="container">
<span class="navbar-brand">
<i class="bi bi-graph-up"></i>
价值投资盯盘系统
</span>
<div class="navbar-nav">
<a class="nav-link" href="/">监控列表</a>
<a class="nav-link active" href="/market">指数行情</a>
</div>
</div>
</nav>
<div class="index-container">
<div class="index-grid" id="indexList">
<!-- 指数数据将通过JavaScript动态添加 -->
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.4.3/dist/echarts.min.js"></script>
<script>
// 获取指数数据
async function refreshIndexData() {
try {
const response = await fetch('/api/index_info');
const data = await response.json();
updateIndexDisplay(data);
} catch (error) {
console.error('获取指数数据失败:', error);
}
}
// 更新指数显示
function updateIndexDisplay(indexData) {
const indexList = document.getElementById('indexList');
indexList.innerHTML = '';
indexData.forEach(index => {
const card = document.createElement('div');
card.className = 'index-card';
const changeClass = index.change >= 0 ? 'positive-value' : 'negative-value';
const changeSign = index.change >= 0 ? '+' : '';
card.innerHTML = `
<div class="index-name">${index.name}</div>
<div class="d-flex justify-content-between align-items-center">
<div class="index-price">${index.price.toFixed(2)}</div>
<div class="index-change ${changeClass}">${changeSign}${index.change.toFixed(2)}%</div>
</div>
<div class="index-chart" id="chart_${index.code.replace('.', '_')}"></div>
`;
indexList.appendChild(card);
// 创建K线图
setTimeout(() => {
createKlineChart(index.code, index.kline_data);
}, 0);
});
}
// 创建K线图
function createKlineChart(code, klineData) {
const chartDom = document.getElementById(`chart_${code.replace('.', '_')}`);
const myChart = echarts.init(chartDom);
const dates = klineData.map(item => item.date);
const data = klineData.map(item => [item.open, item.close, item.low, item.high]);
const option = {
animation: false,
grid: {
left: '8%',
right: '8%',
top: '10%',
bottom: '10%'
},
xAxis: {
type: 'category',
data: dates,
axisLine: {
lineStyle: {
color: '#ddd'
}
},
axisLabel: {
formatter: value => value.substring(4),
color: '#666'
}
},
yAxis: {
type: 'value',
scale: true,
splitLine: {
lineStyle: {
color: '#eee'
}
},
axisLabel: {
color: '#666'
}
},
series: [{
type: 'candlestick',
data: data,
itemStyle: {
color: '#ef5350',
color0: '#26a69a',
borderColor: '#ef5350',
borderColor0: '#26a69a'
}
}]
};
myChart.setOption(option);
// 监听窗口大小变化
window.addEventListener('resize', () => {
myChart.resize();
});
}
// 页面加载时获取数据
document.addEventListener('DOMContentLoaded', refreshIndexData);
// 每分钟更新一次数据
setInterval(refreshIndexData, 60000);
</script>
</body>
</html>

4
config.json.example Normal file
View File

@ -0,0 +1,4 @@
{
"watchlist": {},
"tushare_token": "your_tushare_token_here"
}

54
requirements.txt Normal file
View File

@ -0,0 +1,54 @@
aiofiles==23.2.1
akshare==1.11.22
annotated-types==0.7.0
anyio==3.7.1
baostock==0.8.9
beautifulsoup4==4.12.3
bs4==0.0.2
certifi==2024.12.14
charset-normalizer==3.4.1
click==8.1.8
decorator==5.1.1
efinance==0.4.8
et_xmlfile==2.0.0
fastapi==0.104.1
h11==0.14.0
html5lib==1.1
idna==3.10
Jinja2==3.1.2
jsonpath==0.82.2
lxml==5.3.0
markdown-it-py==3.0.0
MarkupSafe==3.0.2
mdurl==0.1.2
multitasking==0.0.11
numpy==2.2.1
openpyxl==3.1.5
pandas==2.2.3
py==1.11.0
py_mini_racer==0.6.0
pydantic==2.10.4
pydantic_core==2.27.2
Pygments==2.19.1
pypinyin==0.53.0
python-dateutil==2.9.0.post0
python-multipart==0.0.6
pytz==2024.2
requests==2.32.3
retry==0.9.2
rich==13.9.4
simplejson==3.19.3
six==1.17.0
sniffio==1.3.1
soupsieve==2.6
starlette==0.27.0
tabulate==0.9.0
tqdm==4.67.1
tushare==1.4.16
typing_extensions==4.12.2
tzdata==2024.2
urllib3==2.3.0
uvicorn==0.24.0
webencodings==0.5.1
websocket-client==1.8.0
xlrd==2.0.1

12
run.py Normal file
View File

@ -0,0 +1,12 @@
import uvicorn
from app import app
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000, # 修改为8000端口
reload=True, # 启用热重载
log_level="debug", # 设置日志级别为debug
workers=1 # 开发模式使用单个worker
)

2283
stock_cache.json Normal file

File diff suppressed because it is too large Load Diff

38
watchlist.json Normal file
View File

@ -0,0 +1,38 @@
{
"sh600601": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
},
"sz0024515": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
},
"sz870199": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
},
"601318": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
},
"600601": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
},
"300059": {
"target_market_value": null,
"target_pe": null,
"target_pb": null,
"target_dividend_yield": null
}
}