import json import os import re from openai import OpenAI class AIAnalysisService: def __init__(self): self.model = "ep-20250111143839-vn8l8" # endpoint ID self.client = OpenAI( api_key = "cf4edd4d-55cd-4e0f-82f6-49072660bdaf", # 直接使用API Key base_url = "https://ark.cn-beijing.volces.com/api/v3" ) def analyze_value_investment(self, analysis_data): """ 对股票进行价值投资分析 :param analysis_data: 包含各项财务指标的字典 :return: AI分析结果 """ try: # 打印输入数据用于调试 print(f"输入的分析数据: {json.dumps(analysis_data, ensure_ascii=False, indent=2)}") # 构建提示词 prompt = self._build_analysis_prompt(analysis_data) # 打印提示词用于调试 print(f"AI分析提示词: {prompt}") # 调用API response = self.client.chat.completions.create( model=self.model, messages=[ { "role": "user", "content": [ { "type": "text", "text": prompt } ] } ] ) # 获取分析结果 analysis_text = response.choices[0].message.content print(f"AI原始返回结果: {analysis_text}") try: # 尝试解析JSON analysis_result = json.loads(analysis_text) print(f"解析后的JSON结果: {json.dumps(analysis_result, ensure_ascii=False, indent=2)}") # 构建完整的返回结果 result = analysis_result print(f"最终返回结果: {json.dumps(result, ensure_ascii=False, indent=2)}") return result except json.JSONDecodeError as e: print(f"JSON解析失败: {str(e)}") # 如果JSON解析失败,返回错误信息 return { 'stock_info': analysis_data.get('stock_info', {}), 'valuation': analysis_data.get('valuation', {}), 'profitability': analysis_data.get('profitability', {}), 'growth': analysis_data.get('growth', {}), 'operation': analysis_data.get('operation', {}), 'solvency': analysis_data.get('solvency', {}), 'cash_flow': analysis_data.get('cash_flow', {}), 'per_share': analysis_data.get('per_share', {}), 'analysis_result': { "error": "AI返回的结果不是有效的JSON格式", "raw_text": analysis_text } } except Exception as e: print(f"AI分析失败: {str(e)}") print(f"错误详情: {e.__class__.__name__}") import traceback print(f"错误堆栈: {traceback.format_exc()}") return {"error": f"AI分析失败: {str(e)}"} def _parse_analysis_result(self, analysis_text, current_price): """ 解析AI返回的分析文本,提取结构化信息 """ try: print(f"开始解析分析文本...") # 提取投资建议 suggestion_pattern = r"投资建议[::]([\s\S]*?)(?=\n\n|$)" suggestion_match = re.search(suggestion_pattern, analysis_text, re.MULTILINE | re.DOTALL) investment_suggestion = suggestion_match.group(1).strip() if suggestion_match else "" print(f"提取到的投资建议: {investment_suggestion}") # 提取合理价格区间 price_pattern = r"合理股价区间[::]\s*(\d+\.?\d*)\s*[元-]\s*(\d+\.?\d*)[元]" price_match = re.search(price_pattern, analysis_text) if price_match: price_min = float(price_match.group(1)) price_max = float(price_match.group(2)) else: price_min = current_price * 0.8 price_max = current_price * 1.2 print(f"提取到的价格区间: {price_min}-{price_max}") # 提取目标市值区间(单位:亿元) market_value_pattern = r"目标市值区间[::]\s*(\d+\.?\d*)\s*[亿-]\s*(\d+\.?\d*)[亿]" market_value_match = re.search(market_value_pattern, analysis_text) if market_value_match: market_value_min = float(market_value_match.group(1)) market_value_max = float(market_value_match.group(2)) else: # 尝试从文本中提取计算得出的市值 calc_pattern = r"最低市值[=≈约]*(\d+\.?\d*)[亿].*最高市值[=≈约]*(\d+\.?\d*)[亿]" calc_match = re.search(calc_pattern, analysis_text) if calc_match: market_value_min = float(calc_match.group(1)) market_value_max = float(calc_match.group(2)) else: market_value_min = 0 market_value_max = 0 print(f"提取到的市值区间: {market_value_min}-{market_value_max}") # 提取各个分析维度的内容 analysis_patterns = { "valuation_analysis": r"估值分析([\s\S]*?)(?=###\s*财务状况分析|###\s*成长性分析|$)", "financial_health": r"财务状况分析([\s\S]*?)(?=###\s*成长性分析|###\s*风险评估|$)", "growth_potential": r"成长性分析([\s\S]*?)(?=###\s*风险评估|###\s*投资建议|$)", "risk_assessment": r"风险评估([\s\S]*?)(?=###\s*投资建议|$)" } analysis_results = {} for key, pattern in analysis_patterns.items(): match = re.search(pattern, analysis_text, re.MULTILINE | re.DOTALL) content = match.group(1).strip() if match else "" # 移除markdown标记和多余的空白字符 content = re.sub(r'[#\-*]', '', content).strip() analysis_results[key] = content print(f"提取到的{key}: {content[:100]}...") return { "investment_suggestion": investment_suggestion, "analysis": analysis_results, "price_analysis": { "reasonable_price_range": { "min": price_min, "max": price_max }, "target_market_value": { "min": market_value_min, "max": market_value_max } } } except Exception as e: print(f"解析分析结果失败: {str(e)}") print(f"错误详情: {e.__class__.__name__}") import traceback print(f"错误堆栈: {traceback.format_exc()}") return { "investment_suggestion": "分析结果解析失败", "analysis": { "valuation_analysis": "解析失败", "financial_health": "解析失败", "growth_potential": "解析失败", "risk_assessment": "解析失败" }, "price_analysis": { "reasonable_price_range": { "min": current_price * 0.8, "max": current_price * 1.2 }, "target_market_value": { "min": 0, "max": 0 } } } def _build_analysis_prompt(self, data): """ 构建AI分析提示词 """ stock_info = data.get('stock_info', {}) valuation = data.get('valuation', {}) profitability = data.get('profitability', {}) growth = data.get('growth', {}) operation = data.get('operation', {}) solvency = data.get('solvency', {}) cash_flow = data.get('cash_flow', {}) per_share = data.get('per_share', {}) # 格式化数值,保留4位小数 def format_number(value): try: if value is None: return "0.0000" if isinstance(value, (int, float)): if abs(value) < 0.0001: # 对于非常小的数值 return "0.0000" return f"{value:.4f}" if isinstance(value, str): try: value = float(value) if abs(value) < 0.0001: return "0.0000" return f"{value:.4f}" except: pass return str(value) except: return "0.0000" # 格式化百分比,保留2位小数 def format_percent(value): try: if value is None: return "0.00%" if isinstance(value, (int, float)): # 如果值已经是小数形式(如0.5代表50%),则乘以100 if abs(value) <= 1: value = value * 100 return f"{value:.2f}%" if isinstance(value, str): try: value = float(value) if abs(value) <= 1: value = value * 100 return f"{value:.2f}%" except: pass return "0.00%" except: return "0.00%" # 构建数据部分 data_section = f"""请作为一位专业的价值投资分析师,对{stock_info.get('name', '')}({stock_info.get('code', '')})进行深入的价值投资分析。 当前市场信息: - 市盈率(PE):{format_number(valuation.get('pe_ratio'))} - 市净率(PB):{format_number(valuation.get('pb_ratio'))} - 市销率(PS):{format_number(valuation.get('ps_ratio'))} - 股息率:{format_percent(valuation.get('dividend_yield'))} - 总市值(亿元):{format_number(valuation.get('total_market_value'))} - 当前股价:{format_number(stock_info.get('current_price'))}元 盈利能力指标: - ROE:{format_percent(profitability.get('roe'))} - 毛利率:{format_percent(profitability.get('gross_margin'))} - 净利率:{format_percent(profitability.get('net_margin'))} 成长能力指标: - 净利润增长率:{format_percent(growth.get('net_profit_growth'))} - 扣非净利润增长率:{format_percent(growth.get('deducted_net_profit_growth'))} - 营收增长率:{format_percent(growth.get('revenue_growth'))} 运营能力指标: - 总资产周转率:{format_number(operation.get('asset_turnover'))}次/年 - 存货周转率:{format_number(operation.get('inventory_turnover'))}次/年 - 应收账款周转率:{format_number(operation.get('receivables_turnover'))}次/年 偿债能力指标: - 流动比率:{format_number(solvency.get('current_ratio'))} - 速动比率:{format_number(solvency.get('quick_ratio'))} - 资产负债率:{format_percent(solvency.get('debt_to_assets'))} 现金流指标: - 经营现金流/营收比:{format_percent(cash_flow.get('ocf_to_revenue'))} - 经营现金流同比增长:{format_percent(cash_flow.get('ocf_growth'))} 每股指标: - 每股收益(EPS):{format_number(per_share.get('eps'))}元 - 每股净资产(BPS):{format_number(per_share.get('bps'))}元 - 每股现金流(CFPS):{format_number(per_share.get('cfps'))}元 - 每股经营现金流(OCFPS):{format_number(per_share.get('ocfps'))}元 - 每股未分配利润:{format_number(per_share.get('retained_eps'))}元""" # 构建分析要求部分 analysis_requirements = """ 请基于以上数据,从价值投资的角度进行分析。请特别注意: 1. 结合行业特点、公司竞争力、成长性等因素,给出合理的估值区间 2. 存货周转率为0可能表示数据缺失,分析时需要谨慎对待 3. 考虑当前市场环境和行业整体估值水平 在给出估值区间时,请充分考虑: 1. 公司所处行业特点和竞争格局 2. 公司的竞争优势和市场地位 3. 当前的盈利能力和成长性 4. 财务健康状况和风险因素 5. 宏观经济环境和行业周期 6. 可比公司的估值水平 请以JSON格式返回分析结果,包含以下内容: 1. investment_suggestion: 投资建议,包含summary(总体建议)、action(具体操作建议)和key_points(关注重点) 2. analysis: 详细分析,包含估值分析、财务健康状况、成长潜力和风险评估 3. price_analysis: 价格分析,包含合理价格区间和目标市值区间 请确保返回的是一个有效的JSON格式,数值使用数字而不是字符串(价格、市值等),文本分析使用字符串。分析要客观、专业、详细。""" # 组合完整的提示词 prompt = data_section + analysis_requirements return prompt