719 lines
30 KiB
Python
719 lines
30 KiB
Python
import json
|
||
import os
|
||
from openai import OpenAI
|
||
from app.config import Config
|
||
|
||
class AIAnalysisService:
|
||
def __init__(self):
|
||
# 配置OpenAI客户端连接到Volces API
|
||
self.model = "ep-20251113170010-6qdcp" # Volces 模型接入点ID
|
||
self.client = OpenAI(
|
||
api_key = "ec3ebae6-e131-4b1e-a5ae-30f70468e165", # 豆包大模型APIkey
|
||
base_url = "https://ark.cn-beijing.volces.com/api/v3"
|
||
)
|
||
# 创建AI分析结果缓存目录
|
||
self.cache_dir = os.path.join(Config.BASE_DIR, "ai_stock_analysis")
|
||
self.dao_cache_dir = os.path.join(Config.BASE_DIR, "dao_analysis")
|
||
self.daka_cache_dir = os.path.join(Config.BASE_DIR, "daka_analysis")
|
||
|
||
# 确保所有缓存目录存在
|
||
for directory in [self.cache_dir, self.dao_cache_dir, self.daka_cache_dir]:
|
||
if not os.path.exists(directory):
|
||
os.makedirs(directory)
|
||
|
||
def get_cache_path(self, stock_code: str) -> str:
|
||
"""获取缓存文件路径"""
|
||
return os.path.join(self.cache_dir, f"{stock_code}.json")
|
||
|
||
def get_dao_cache_path(self, stock_code: str) -> str:
|
||
"""获取道德经分析缓存文件路径"""
|
||
return os.path.join(self.dao_cache_dir, f"{stock_code}.json")
|
||
|
||
def get_daka_cache_path(self, stock_code: str) -> str:
|
||
"""获取大咖分析缓存文件路径"""
|
||
return os.path.join(self.daka_cache_dir, f"{stock_code}.json")
|
||
|
||
def load_cache(self, stock_code: str):
|
||
"""加载缓存的AI分析结果"""
|
||
cache_path = self.get_cache_path(stock_code)
|
||
if os.path.exists(cache_path):
|
||
try:
|
||
with open(cache_path, 'r', encoding='utf-8') as f:
|
||
return json.load(f)
|
||
except Exception as e:
|
||
print(f"读取AI分析缓存失败: {str(e)}")
|
||
return None
|
||
|
||
def save_cache(self, stock_code: str, analysis_result: dict):
|
||
"""保存AI分析结果到缓存"""
|
||
cache_path = self.get_cache_path(stock_code)
|
||
try:
|
||
with open(cache_path, 'w', encoding='utf-8') as f:
|
||
json.dump(analysis_result, f, ensure_ascii=False, indent=4)
|
||
except Exception as e:
|
||
print(f"保存AI分析缓存失败: {str(e)}")
|
||
|
||
def load_dao_cache(self, stock_code: str):
|
||
"""加载缓存的道德经分析结果"""
|
||
cache_path = self.get_dao_cache_path(stock_code)
|
||
if os.path.exists(cache_path):
|
||
try:
|
||
with open(cache_path, 'r', encoding='utf-8') as f:
|
||
return json.load(f)
|
||
except Exception as e:
|
||
print(f"读取道德经分析缓存失败: {str(e)}")
|
||
return None
|
||
|
||
def save_dao_cache(self, stock_code: str, analysis_result: dict):
|
||
"""保存道德经分析结果到缓存"""
|
||
cache_path = self.get_dao_cache_path(stock_code)
|
||
try:
|
||
with open(cache_path, 'w', encoding='utf-8') as f:
|
||
json.dump(analysis_result, f, ensure_ascii=False, indent=4)
|
||
except Exception as e:
|
||
print(f"保存道德经分析缓存失败: {str(e)}")
|
||
|
||
def load_daka_cache(self, stock_code: str):
|
||
"""加载缓存的大咖分析结果"""
|
||
cache_path = self.get_daka_cache_path(stock_code)
|
||
if os.path.exists(cache_path):
|
||
try:
|
||
with open(cache_path, 'r', encoding='utf-8') as f:
|
||
return json.load(f)
|
||
except Exception as e:
|
||
print(f"读取大咖分析缓存失败: {str(e)}")
|
||
return None
|
||
|
||
def save_daka_cache(self, stock_code: str, analysis_result: dict):
|
||
"""保存大咖分析结果到缓存"""
|
||
cache_path = self.get_daka_cache_path(stock_code)
|
||
try:
|
||
with open(cache_path, 'w', encoding='utf-8') as f:
|
||
json.dump(analysis_result, f, ensure_ascii=False, indent=4)
|
||
except Exception as e:
|
||
print(f"保存大咖分析缓存失败: {str(e)}")
|
||
|
||
def analyze_value_investment(self, analysis_data: dict, force_refresh: bool = False):
|
||
"""
|
||
对股票进行价值投资分析
|
||
:param analysis_data: 包含各项财务指标的字典
|
||
:param force_refresh: 是否强制刷新分析结果
|
||
:return: AI分析结果
|
||
"""
|
||
try:
|
||
stock_code = analysis_data["stock_info"]["code"]
|
||
|
||
# 如果不是强制刷新,尝试从缓存加载
|
||
if not force_refresh:
|
||
cached_result = self.load_cache(stock_code)
|
||
if cached_result:
|
||
print(f"从缓存加载AI分析结果: {stock_code}")
|
||
return cached_result
|
||
|
||
# 打印输入数据用于调试
|
||
print(f"输入的分析数据: {json.dumps(analysis_data, ensure_ascii=False, indent=2)}")
|
||
|
||
# 构建提示词
|
||
prompt = self._build_analysis_prompt(analysis_data)
|
||
|
||
# 打印提示词用于调试
|
||
print(f"AI分析提示词: {prompt}")
|
||
|
||
# 调用API
|
||
response = self.client.chat.completions.create(
|
||
model=self.model,
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": prompt
|
||
}
|
||
]
|
||
}
|
||
]
|
||
)
|
||
|
||
# 获取分析结果
|
||
analysis_text = response.choices[0].message.content
|
||
print(f"AI原始返回结果: {analysis_text}")
|
||
|
||
try:
|
||
# 尝试解析JSON
|
||
analysis_result = json.loads(analysis_text)
|
||
print(f"解析后的JSON结果: {json.dumps(analysis_result, ensure_ascii=False, indent=2)}")
|
||
|
||
# 保存到缓存
|
||
self.save_cache(stock_code, analysis_result)
|
||
|
||
return analysis_result
|
||
|
||
except json.JSONDecodeError as e:
|
||
print(f"JSON解析失败: {str(e)}")
|
||
# 如果JSON解析失败,返回错误信息
|
||
error_result = {
|
||
'stock_info': analysis_data.get('stock_info', {}),
|
||
'valuation': analysis_data.get('valuation', {}),
|
||
'profitability': analysis_data.get('profitability', {}),
|
||
'growth': analysis_data.get('growth', {}),
|
||
'operation': analysis_data.get('operation', {}),
|
||
'solvency': analysis_data.get('solvency', {}),
|
||
'cash_flow': analysis_data.get('cash_flow', {}),
|
||
'per_share': analysis_data.get('per_share', {}),
|
||
'analysis_result': {
|
||
"error": "AI返回的结果不是有效的JSON格式",
|
||
"raw_text": analysis_text
|
||
}
|
||
}
|
||
return error_result
|
||
|
||
except Exception as e:
|
||
print(f"AI分析失败: {str(e)}")
|
||
return {"error": f"AI分析失败: {str(e)}"}
|
||
|
||
def _parse_analysis_result(self, analysis_text, current_price):
|
||
"""
|
||
解析AI返回的分析文本,提取结构化信息
|
||
"""
|
||
try:
|
||
print(f"开始解析分析文本...")
|
||
|
||
# 提取投资建议
|
||
suggestion_pattern = r"投资建议[::]([\s\S]*?)(?=\n\n|$)"
|
||
suggestion_match = re.search(suggestion_pattern, analysis_text, re.MULTILINE | re.DOTALL)
|
||
investment_suggestion = suggestion_match.group(1).strip() if suggestion_match else ""
|
||
print(f"提取到的投资建议: {investment_suggestion}")
|
||
|
||
# 提取合理价格区间
|
||
price_pattern = r"合理股价区间[::]\s*(\d+\.?\d*)\s*[元-]\s*(\d+\.?\d*)[元]"
|
||
price_match = re.search(price_pattern, analysis_text)
|
||
if price_match:
|
||
price_min = float(price_match.group(1))
|
||
price_max = float(price_match.group(2))
|
||
else:
|
||
price_min = current_price * 0.8
|
||
price_max = current_price * 1.2
|
||
print(f"提取到的价格区间: {price_min}-{price_max}")
|
||
|
||
# 提取目标市值区间(单位:亿元)
|
||
market_value_pattern = r"目标市值区间[::]\s*(\d+\.?\d*)\s*[亿-]\s*(\d+\.?\d*)[亿]"
|
||
market_value_match = re.search(market_value_pattern, analysis_text)
|
||
if market_value_match:
|
||
market_value_min = float(market_value_match.group(1))
|
||
market_value_max = float(market_value_match.group(2))
|
||
else:
|
||
# 尝试从文本中提取计算得出的市值
|
||
calc_pattern = r"最低市值[=≈约]*(\d+\.?\d*)[亿].*最高市值[=≈约]*(\d+\.?\d*)[亿]"
|
||
calc_match = re.search(calc_pattern, analysis_text)
|
||
if calc_match:
|
||
market_value_min = float(calc_match.group(1))
|
||
market_value_max = float(calc_match.group(2))
|
||
else:
|
||
market_value_min = 0
|
||
market_value_max = 0
|
||
print(f"提取到的市值区间: {market_value_min}-{market_value_max}")
|
||
|
||
# 提取各个分析维度的内容
|
||
analysis_patterns = {
|
||
"valuation_analysis": r"估值分析([\s\S]*?)(?=###\s*财务状况分析|###\s*成长性分析|$)",
|
||
"financial_health": r"财务状况分析([\s\S]*?)(?=###\s*成长性分析|###\s*风险评估|$)",
|
||
"growth_potential": r"成长性分析([\s\S]*?)(?=###\s*风险评估|###\s*投资建议|$)",
|
||
"risk_assessment": r"风险评估([\s\S]*?)(?=###\s*投资建议|$)"
|
||
}
|
||
|
||
analysis_results = {}
|
||
for key, pattern in analysis_patterns.items():
|
||
match = re.search(pattern, analysis_text, re.MULTILINE | re.DOTALL)
|
||
content = match.group(1).strip() if match else ""
|
||
# 移除markdown标记和多余的空白字符
|
||
content = re.sub(r'[#\-*]', '', content).strip()
|
||
analysis_results[key] = content
|
||
print(f"提取到的{key}: {content[:100]}...")
|
||
|
||
return {
|
||
"investment_suggestion": investment_suggestion,
|
||
"analysis": analysis_results,
|
||
"price_analysis": {
|
||
"reasonable_price_range": {
|
||
"min": price_min,
|
||
"max": price_max
|
||
},
|
||
"target_market_value": {
|
||
"min": market_value_min,
|
||
"max": market_value_max
|
||
}
|
||
}
|
||
}
|
||
|
||
except Exception as e:
|
||
print(f"解析分析结果失败: {str(e)}")
|
||
print(f"错误详情: {e.__class__.__name__}")
|
||
import traceback
|
||
print(f"错误堆栈: {traceback.format_exc()}")
|
||
return {
|
||
"investment_suggestion": "分析结果解析失败",
|
||
"analysis": {
|
||
"valuation_analysis": "解析失败",
|
||
"financial_health": "解析失败",
|
||
"growth_potential": "解析失败",
|
||
"risk_assessment": "解析失败"
|
||
},
|
||
"price_analysis": {
|
||
"reasonable_price_range": {
|
||
"min": current_price * 0.8,
|
||
"max": current_price * 1.2
|
||
},
|
||
"target_market_value": {
|
||
"min": 0,
|
||
"max": 0
|
||
}
|
||
}
|
||
}
|
||
|
||
def _build_analysis_prompt(self, data):
|
||
"""
|
||
构建AI分析提示词
|
||
"""
|
||
stock_info = data.get('stock_info', {})
|
||
valuation = data.get('valuation', {})
|
||
profitability = data.get('profitability', {})
|
||
growth = data.get('growth', {})
|
||
operation = data.get('operation', {})
|
||
solvency = data.get('solvency', {})
|
||
cash_flow = data.get('cash_flow', {})
|
||
per_share = data.get('per_share', {})
|
||
|
||
# 格式化数值,保留4位小数
|
||
def format_number(value):
|
||
try:
|
||
if value is None:
|
||
return "0.0000"
|
||
if isinstance(value, (int, float)):
|
||
if abs(value) < 0.0001: # 对于非常小的数值
|
||
return "0.0000"
|
||
return f"{value:.4f}"
|
||
if isinstance(value, str):
|
||
try:
|
||
value = float(value)
|
||
if abs(value) < 0.0001:
|
||
return "0.0000"
|
||
return f"{value:.4f}"
|
||
except:
|
||
pass
|
||
return str(value)
|
||
except:
|
||
return "0.0000"
|
||
|
||
# 格式化百分比,保留2位小数
|
||
def format_percent(value):
|
||
try:
|
||
if value is None:
|
||
return "0.00%"
|
||
if isinstance(value, (int, float)):
|
||
# 如果值已经是小数形式(如0.5代表50%),则乘以100
|
||
if abs(value) <= 1:
|
||
value = value * 100
|
||
return f"{value:.2f}%"
|
||
if isinstance(value, str):
|
||
try:
|
||
value = float(value)
|
||
if abs(value) <= 1:
|
||
value = value * 100
|
||
return f"{value:.2f}%"
|
||
except:
|
||
pass
|
||
return "0.00%"
|
||
except:
|
||
return "0.00%"
|
||
|
||
# 构建数据部分
|
||
data_section = f"""请作为一位专业的价值投资分析师,对{stock_info.get('name', '')}({stock_info.get('code', '')})进行深入的价值投资分析。
|
||
|
||
当前市场信息:
|
||
- 市盈率(PE):{format_number(valuation.get('pe_ratio'))}
|
||
- 市净率(PB):{format_number(valuation.get('pb_ratio'))}
|
||
- 市销率(PS):{format_number(valuation.get('ps_ratio'))}
|
||
- 股息率:{format_percent(valuation.get('dividend_yield'))}
|
||
- 总市值(亿元):{format_number(valuation.get('total_market_value'))}
|
||
- 当前股价:{format_number(stock_info.get('current_price'))}元
|
||
|
||
盈利能力指标:
|
||
- ROE:{format_percent(profitability.get('roe'))}
|
||
- 毛利率:{format_percent(profitability.get('gross_margin'))}
|
||
- 净利率:{format_percent(profitability.get('net_margin'))}
|
||
|
||
成长能力指标:
|
||
- 净利润增长率:{format_percent(growth.get('net_profit_growth'))}
|
||
- 扣非净利润增长率:{format_percent(growth.get('deducted_net_profit_growth'))}
|
||
- 营收增长率:{format_percent(growth.get('revenue_growth'))}
|
||
|
||
运营能力指标:
|
||
- 总资产周转率:{format_number(operation.get('asset_turnover'))}次/年
|
||
- 存货周转率:{format_number(operation.get('inventory_turnover'))}次/年
|
||
- 应收账款周转率:{format_number(operation.get('receivables_turnover'))}次/年
|
||
|
||
偿债能力指标:
|
||
- 流动比率:{format_number(solvency.get('current_ratio'))}
|
||
- 速动比率:{format_number(solvency.get('quick_ratio'))}
|
||
- 资产负债率:{format_percent(solvency.get('debt_to_assets'))}
|
||
|
||
现金流指标:
|
||
- 经营现金流/营收比:{format_percent(cash_flow.get('ocf_to_revenue'))}
|
||
- 经营现金流同比增长:{format_percent(cash_flow.get('ocf_growth'))}
|
||
|
||
每股指标:
|
||
- 每股收益(EPS):{format_number(per_share.get('eps'))}元
|
||
- 每股净资产(BPS):{format_number(per_share.get('bps'))}元
|
||
- 每股现金流(CFPS):{format_number(per_share.get('cfps'))}元
|
||
- 每股经营现金流(OCFPS):{format_number(per_share.get('ocfps'))}元
|
||
- 每股未分配利润:{format_number(per_share.get('retained_eps'))}元"""
|
||
|
||
# 构建分析要求部分
|
||
analysis_requirements = """
|
||
请基于以上数据,从价值投资的角度进行分析。请特别注意:
|
||
1. 结合行业特点、公司竞争力、成长性等因素,给出合理的估值区间
|
||
2. 某些数据可能缺失或异常,分析时需要谨慎对待,或者从东财choice获取
|
||
3. 考虑当前市场环境和行业整体估值水平
|
||
|
||
在给出估值区间时,请充分考虑:
|
||
1. 公司所处行业特点和竞争格局
|
||
2. 公司的竞争优势和市场地位
|
||
3. 当前的盈利能力和成长性
|
||
4. 财务健康状况和风险因素
|
||
5. 宏观经济环境和行业周期
|
||
6. 可比公司的估值水平
|
||
|
||
请以JSON格式返回分析结果,包含以下内容:
|
||
1. investment_suggestion: 投资建议,包含summary(总体建议)、action(具体操作建议)和key_points(关注重点)
|
||
2. analysis: 详细分析,包含估值分析、财务健康状况、成长潜力和风险评估
|
||
3. price_analysis: 价格分析,包含合理价格区间和目标市值区间
|
||
实例:
|
||
"price_analysis": {
|
||
"合理价格区间": [
|
||
xxx,
|
||
xxx
|
||
],
|
||
"目标市值区间": [
|
||
xxx,
|
||
xxx
|
||
]
|
||
|
||
请确保返回的是一个有效的JSON格式,不要使用代码块格式,数值使用数字而不是字符串(价格、市值等),文本分析使用字符串。分析要客观、专业、详细。"""
|
||
|
||
# 组合完整的提示词
|
||
prompt = data_section + analysis_requirements
|
||
|
||
return prompt
|
||
|
||
def analyze_tao_philosophy(self, company_info: dict, force_refresh: bool = False):
|
||
"""
|
||
基于道德经理念分析公司
|
||
:param company_info: 公司信息
|
||
:param force_refresh: 是否强制刷新分析结果
|
||
:return: AI分析结果
|
||
"""
|
||
try:
|
||
stock_code = company_info.get('basic_info', {}).get('code')
|
||
|
||
# 如果不是强制刷新,尝试从缓存加载
|
||
if not force_refresh and stock_code:
|
||
cached_result = self.load_dao_cache(stock_code)
|
||
if cached_result:
|
||
print(f"从缓存加载道德经分析结果: {stock_code}")
|
||
return cached_result
|
||
|
||
# 构建提示词
|
||
prompt = self._build_tao_analysis_prompt(company_info)
|
||
|
||
# 调用API
|
||
response = self.client.chat.completions.create(
|
||
model=self.model,
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": prompt
|
||
}
|
||
]
|
||
)
|
||
|
||
# 获取分析结果
|
||
analysis_text = response.choices[0].message.content
|
||
|
||
try:
|
||
# 解析JSON结果
|
||
analysis_result = json.loads(analysis_text)
|
||
|
||
# 保存到缓存
|
||
if stock_code:
|
||
self.save_dao_cache(stock_code, analysis_result)
|
||
|
||
return analysis_result
|
||
except json.JSONDecodeError as e:
|
||
print(f"道德经分析结果JSON解析失败: {str(e)}")
|
||
return {"error": "分析结果格式错误"}
|
||
|
||
except Exception as e:
|
||
print(f"道德经分析失败: {str(e)}")
|
||
return {"error": f"道德经分析失败: {str(e)}"}
|
||
|
||
def _build_tao_analysis_prompt(self, company_info: dict):
|
||
"""
|
||
构建道德经分析提示词
|
||
"""
|
||
basic_info = company_info.get('basic_info', {})
|
||
|
||
prompt = f"""请作为一位精通道德经的智者,运用道德经的智慧来分析{basic_info.get('name', '')}({basic_info.get('code', '')})这家公司。
|
||
|
||
公司基本信息:
|
||
- 公司名称:{basic_info.get('name', '')}
|
||
- 所属行业:{basic_info.get('industry', '')}
|
||
- 主营业务:{basic_info.get('main_business', '')}
|
||
- 经营范围:{basic_info.get('business_scope', '')}
|
||
- 公司简介:{basic_info.get('introduction', '')}
|
||
|
||
请从道德经的智慧角度,分析以下几个方面:
|
||
|
||
1. 道德经视角:
|
||
- 公司的经营理念是否符合"道法自然"的原则
|
||
- 企业的发展是否遵循"无为而治"的智慧
|
||
- 公司是否体现"上善若水"的品质
|
||
- 管理方式是否符合"柔弱胜刚强"的道理
|
||
|
||
2. 企业道德评估:
|
||
- 公司对待员工、客户、供应商的态度
|
||
- 企业的社会责任感和可持续发展理念
|
||
- 公司的价值观和企业文化
|
||
- 经营中的道德风险评估
|
||
|
||
3. 投资建议:
|
||
- 基于道德经智慧的投资建议
|
||
- 长期发展潜力分析
|
||
- 需要关注的风险点
|
||
- 持有建议
|
||
|
||
请以JSON格式返回分析结果,包含以下字段:
|
||
1. tao_philosophy: 道德经视角的分析
|
||
2. business_ethics: 企业道德评估
|
||
3. investment_advice: 投资建议
|
||
|
||
分析要客观、专业、深入,同时体现道德经的智慧。"""
|
||
|
||
return prompt
|
||
|
||
def analyze_by_masters(self, company_info: dict, value_analysis: dict, force_refresh: bool = False):
|
||
"""
|
||
基于各位价值投资大咖的理念分析公司
|
||
:param company_info: 公司信息
|
||
:param value_analysis: 价值分析数据
|
||
:param force_refresh: 是否强制刷新分析结果
|
||
:return: AI分析结果
|
||
"""
|
||
try:
|
||
stock_code = company_info.get('basic_info', {}).get('code')
|
||
|
||
# 如果不是强制刷新,尝试从缓存加载
|
||
if not force_refresh and stock_code:
|
||
cached_result = self.load_daka_cache(stock_code)
|
||
if cached_result:
|
||
print(f"从缓存加载大咖分析结果: {stock_code}")
|
||
return cached_result
|
||
|
||
# 打印输入数据用于调试
|
||
print(f"公司信息: {json.dumps(company_info, ensure_ascii=False, indent=2)}")
|
||
print(f"价值分析数据: {json.dumps(value_analysis, ensure_ascii=False, indent=2)}")
|
||
|
||
# 构建提示词
|
||
prompt = self._build_masters_analysis_prompt(company_info, value_analysis)
|
||
|
||
# 打印提示词用于调试
|
||
print(f"大咖分析提示词: {prompt}")
|
||
|
||
# 调用API
|
||
response = self.client.chat.completions.create(
|
||
model=self.model,
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": prompt
|
||
}
|
||
]
|
||
)
|
||
|
||
# 获取分析结果
|
||
analysis_text = response.choices[0].message.content
|
||
print(f"AI原始返回结果: {analysis_text}")
|
||
|
||
try:
|
||
# 解析JSON结果
|
||
analysis_result = json.loads(analysis_text)
|
||
print(f"解析后的JSON结果: {json.dumps(analysis_result, ensure_ascii=False, indent=2)}")
|
||
|
||
# 保存到缓存
|
||
if stock_code:
|
||
self.save_daka_cache(stock_code, analysis_result)
|
||
|
||
return analysis_result
|
||
except json.JSONDecodeError as e:
|
||
print(f"大咖分析结果JSON解析失败: {str(e)}")
|
||
return {"error": "分析结果格式错误"}
|
||
|
||
except Exception as e:
|
||
print(f"价值投资大咖分析失败: {str(e)}")
|
||
return {"error": f"价值投资大咖分析失败: {str(e)}"}
|
||
|
||
def _build_masters_analysis_prompt(self, company_info: dict, value_analysis: dict):
|
||
"""
|
||
构建价值投资大咖分析提示词
|
||
"""
|
||
basic_info = company_info.get('basic_info', {})
|
||
|
||
# 从value_analysis中获取财务数据
|
||
valuation = value_analysis.get('valuation', {})
|
||
profitability = value_analysis.get('profitability', {})
|
||
growth = value_analysis.get('growth', {})
|
||
operation = value_analysis.get('operation', {})
|
||
solvency = value_analysis.get('solvency', {})
|
||
cash_flow = value_analysis.get('cash_flow', {})
|
||
per_share = value_analysis.get('per_share', {})
|
||
stock_info = value_analysis.get('stock_info', {})
|
||
|
||
# 格式化百分比
|
||
def format_percent(value):
|
||
if value is None:
|
||
return '-'
|
||
try:
|
||
if isinstance(value, str):
|
||
value = float(value)
|
||
if abs(value) <= 1:
|
||
value = value * 100
|
||
return f"{value:.2f}%"
|
||
except:
|
||
return '-'
|
||
|
||
# 格式化数字
|
||
def format_number(value):
|
||
if value is None:
|
||
return '-'
|
||
try:
|
||
if isinstance(value, str):
|
||
value = float(value)
|
||
return f"{value:.4f}"
|
||
except:
|
||
return '-'
|
||
|
||
prompt = f"""请分别以五位价值投资大咖的视角,分析{basic_info.get('name', '')}({basic_info.get('code', '')})这家公司。
|
||
|
||
公司基本信息:
|
||
- 公司名称:{basic_info.get('name', '')}
|
||
- 所属行业:{basic_info.get('industry', '')}
|
||
- 主营业务:{basic_info.get('main_business', '')}
|
||
- 经营范围:{basic_info.get('business_scope', '')}
|
||
- 公司简介:{basic_info.get('introduction', '')}
|
||
- 法人代表:{basic_info.get('chairman', '')}
|
||
- 总经理:{basic_info.get('manager', '')}
|
||
- 注册资本:{basic_info.get('reg_capital', '')}万元
|
||
- 员工人数:{basic_info.get('employees', '')}人
|
||
- 成立日期:{basic_info.get('setup_date', '')}
|
||
- 上市日期:{basic_info.get('list_date', '')}
|
||
|
||
当前市场信息:
|
||
- 当前股价:{format_number(stock_info.get('current_price'))}元
|
||
- 总市值:{format_number(valuation.get('total_market_value'))}亿元
|
||
- 流通市值:{format_number(valuation.get('circulating_market_value'))}亿元
|
||
- 流通比例:{format_percent(valuation.get('circulating_ratio'))}
|
||
- 换手率:{format_percent(stock_info.get('turnover_ratio'))}
|
||
|
||
估值指标:
|
||
- 市盈率(PE):{format_number(valuation.get('pe_ratio'))}
|
||
- 市净率(PB):{format_number(valuation.get('pb_ratio'))}
|
||
- 市销率(PS):{format_number(valuation.get('ps_ratio'))}
|
||
- 股息率:{format_percent(valuation.get('dividend_yield'))}
|
||
|
||
盈利能力指标:
|
||
- ROE:{format_percent(profitability.get('roe'))}
|
||
- ROE(扣非):{format_percent(profitability.get('deducted_roe'))}
|
||
- ROA:{format_percent(profitability.get('roa'))}
|
||
- 毛利率:{format_percent(profitability.get('gross_margin'))}
|
||
- 净利率:{format_percent(profitability.get('net_margin'))}
|
||
|
||
成长能力指标:
|
||
- 净利润增长率:{format_percent(growth.get('net_profit_growth'))}
|
||
- 扣非净利润增长率:{format_percent(growth.get('deducted_net_profit_growth'))}
|
||
- 营业总收入增长率:{format_percent(growth.get('revenue_growth'))}
|
||
- 营业收入增长率:{format_percent(growth.get('operating_revenue_growth'))}
|
||
|
||
运营能力指标:
|
||
- 总资产周转率:{format_number(operation.get('asset_turnover'))}
|
||
- 存货周转率:{format_number(operation.get('inventory_turnover'))}
|
||
- 应收账款周转率:{format_number(operation.get('receivables_turnover'))}
|
||
- 流动资产周转率:{format_number(operation.get('current_asset_turnover'))}
|
||
|
||
偿债能力指标:
|
||
- 流动比率:{format_number(solvency.get('current_ratio'))}
|
||
- 速动比率:{format_number(solvency.get('quick_ratio'))}
|
||
- 资产负债率:{format_percent(solvency.get('debt_to_assets'))}
|
||
- 产权比率:{format_number(solvency.get('equity_ratio'))}
|
||
|
||
现金流指标:
|
||
- 经营现金流/营收:{format_percent(cash_flow.get('ocf_to_revenue'))}
|
||
- 经营现金流/经营利润:{format_percent(cash_flow.get('ocf_to_operating_profit'))}
|
||
- 经营现金流同比增长:{format_percent(cash_flow.get('ocf_growth'))}
|
||
|
||
每股指标:
|
||
- 每股收益(EPS):{format_number(per_share.get('eps'))}元
|
||
- 每股收益(扣非):{format_number(per_share.get('deducted_eps'))}元
|
||
- 每股净资产:{format_number(per_share.get('bps'))}元
|
||
- 每股经营现金流:{format_number(per_share.get('ocfps'))}元
|
||
- 每股留存收益:{format_number(per_share.get('retained_eps'))}元
|
||
- 每股现金流量:{format_number(per_share.get('cfps'))}元
|
||
- 每股息税前利润:{format_number(per_share.get('ebit_ps'))}元
|
||
|
||
请分别从以下五位投资大师的视角进行分析:
|
||
|
||
1. 巴菲特视角:
|
||
- 是否具有护城河(品牌优势、规模效应、专利技术等)
|
||
- 管理层能力和诚信(从财务指标、现金流等反映的经营能力)
|
||
- 业务是否容易理解(商业模式的清晰度)
|
||
- 长期竞争优势(市场地位、核心竞争力)
|
||
- 是否是好生意(盈利能力、现金流状况)
|
||
- 以合理价格购买优秀企业的原则(估值分析)
|
||
|
||
2. 格雷厄姆视角:
|
||
- 安全边际分析(基于净资产、市盈率等)
|
||
- 内在价值计算(基于盈利能力和资产价值)
|
||
- 财务安全性(偿债能力、资产质量)
|
||
- 是否具有投资价值(基于定量分析)
|
||
- 基于定量分析的结论(综合财务指标评估)
|
||
|
||
3. 林园视角:
|
||
- 行业成长性(收入增长、利润增长)
|
||
- 公司治理结构(股权结构、管理层背景)
|
||
- 研发创新能力(技术优势、产品创新)
|
||
- 市场竞争格局(市场份额、竞争态势)
|
||
- 估值是否合理(相对估值和绝对估值)
|
||
|
||
4. 李大霄视角:
|
||
- 市场地位和品牌价值(行业地位、品牌影响力)
|
||
- 行业发展趋势(产业政策、市场空间)
|
||
- 政策影响分析(行业政策、监管环境)
|
||
- 投资时机把握(技术面和基本面)
|
||
- 投资建议(综合分析结论)
|
||
|
||
5. 段永平视角:
|
||
- 商业模式分析(盈利模式、竞争优势)
|
||
- 用户价值(产品力、客户粘性)
|
||
- 企业文化(管理理念、团队建设)
|
||
- 长期发展潜力(成长空间、持续经营能力)
|
||
- 是否值得长期持有(投资价值判断)
|
||
|
||
请以JSON格式返回分析结果,包含以下字段:
|
||
1. buffett_analysis: 巴菲特的分析观点
|
||
2. graham_analysis: 格雷厄姆的分析观点
|
||
3. lin_yuan_analysis: 林园的分析观点
|
||
4. li_daxiao_analysis: 李大霄的分析观点
|
||
5. duan_yongping_analysis: 段永平的分析观点
|
||
|
||
分析要客观、专业、深入,并体现每位投资大师的独特投资理念。请基于上述详细的财务数据进行分析(如果指标缺失或异常,请联网获取),尤其是定量指标的解读。"""
|
||
|
||
return prompt |